
IN TWO-PHASE SOLIDS 

BY. 

Tsu-Wei Chou 

SU DMS Report No. 69-T-51 



A THEORETICAL INVESTIGATION OF CRACKS 

I N  TWO-PHASE SOLIDS 

bY 

Tsu-Wei Chou 

Department of Materials Science 

Stanford University 

Stanford, Cal i fornia  

Technical Repor% No. 7 

Prepared f o r  t h e  

National Aeronautics and Space Administration 

Under NASA Contract NSG-622 





ABSTRACT 

I n  composite materials, the presence of inhomogeneities alters t h e  

types of stress s i n g u l a r i t i e s  a t  t i p s  of cracks and s l i p  bands. The p l a s t i c  

s t r a i n  concentrated at the  crack t i p  i n  a notch-tough matrix i s  e s s e n t i a l  i n  

determining t h e  c r i t i c a l  f r ac tu re  load of composite materials. 

The concept of continuously d i s t r ibu ted  d is loca t ions  is  used i n  t h e  

present invest igat ion.  

i s  reached by using the d is loca t ion  model. 

A uni f ied  descr ipt ion of both cracks and s l i p  bands 

The e l a s t i c - p l a s t i c  medium under consideration i s  made of two half-  

planes pe r fec t ly  bonded a t  the  in te r face .  

applied a t  the  boundary f a r  f r o m t h e  d is loca t ion  arrays.  

t h e  e f f ec t ive  stresses on d is loca t ions  are uniform i n  t h e  v i c i n i t y  of t he  

in te r face .  

constants of the  const i tuent  phases. The e f f e c t  of inhomogeneity a l s o  causes 

stresses to be induced a t  t h e  phase boundary. These stresses decay exponen- 

t i a l l y  w i t h  t h e  dis tances  from t h e  in t e r f ace  and can be the  primary cause of 

s p l i t t i n g  a t  in te r faces .  

External stresses are uniformly 

It i s  found t h a t  

The magnitude of these e f f ec t ive  stresses depends on the  e l a s t i c  

For Mode I11 cracks of f i n i t e  length, L, ly ing perpendicular t o  the  

phase boundary, t h e  crack t i p  stress s ingu la r i ty  i n  t h e  neighboring phase 

i s  of the  type (t)". p denotes t he  dis tance from crack t i p s  and 

k =  G2 - G1 . 
G2 + G1 
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The i n t e n s i t y  of t h e  r e su l t an t  stress i s  smaller than t h a t  of a semi- 

i n f i n i t e  crack by t h e  f ac to r  (1 - a). 

case where screw dis loca t ions  p i l e  up against  t he  in te r face .  For Modes I 

and I1 cracks, t he  crack t i p  stress s ingu la r i ty  can be found by employing 

numerical procedures. 

This finding i s  a l s o  va l id  f o r  t h e  

For a Mode I11 crack crossing a phase boundary, the  stress singular- 

i t i es  a t  t h e  crack t i p s  behave as i f  the crack t i p  were imbeded i n  a ho- 

mogeneous medium. The stress i n t e n s i t y  a t  t h e  crack t i p  i n  t h e  compara- 

t i v e l y  harder phase i s  higher than t h a t  i n  the s o f t e r  phase. 

The above crack model can be modified t o  discuss e l a s t i c - p l a s t i c  

cracks of composite materials. The s t a t i c  extension of the  p l a s t i c  zone 

ahead of a crack i n  the s o f t  matrix and t h e  crack t i p  opening displacement 

can be minimized by increasing t h e  shear modulus and the  y i e ld  s t rength of 

the  matrix phase The re la t ionships  between the  applied load and t h e  crack 

opening displacement have been found f o r  various bi-mater ia l  systems. By 

experimentally determining t h e  f r ac tu re  toughness of t h e  matrix material, 

t h e  c r i t i c a l  f r ac tu re  load can be found using t h e  present analysis .  

The d is loca t ion  model of an e l a s t i c - p l a s t i c  crack has been extended 

t o  study the  case where t h e  second’phase i s  of f i n i t e  dimension. 

mate methods of analysis  are out l ined t o  discuss t h e  cracking of a hard 

surface f i l m  or  a lamina of f i n i t e  width and having p l a s t i c  deformation 

i n  the neighboring phase. 

Approxi- 
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CHAPTER I 

INTRODUCTION AND REVIEW 

1 4  Purpose of t h e  Invest igat ion 

Appreciable a t t e n t i o n  has been given i n  recent years t o  t h e  develop- 

ment of composite materials. Dispersed second phase p a r t i c l e s  and f i b e r s  

i n  s o f t  matrices provide important technological advantages. The presence 

of dispersed phases plays an important r o l e  i n  determining t h e  s t rength 

and d u c t i l i t y  of t he  composite. 

With the  increasing need f o r  u l t r a  high-strength materials i n  modern 

technology, it becomes necessary t o  obtain a b e t t e r  understanding of the 

proper t ies  of composite materials and of t he  theo re t i ca l  background under- 

lying these propert ies .  For c r y s t a l l i n e  materials i n  par t icu lar ,  a study 

of the behavior of cracks and dis locat ion a r rays  and t h e i r  in te rac t ions  

with various heterogeneous elements i n  these materials i s  evidently of 

basic  importance. 

The purpose of t h e  present invest igat ion i s  t o  explore ce r t a in  

e s s e n t i a l  fea tures  concerning the  propagation of s l i p  bands and e l a s t i c -  

p l a s t i c  cracks i n  composite materials. S t r e s s  s ingu la r i t i e s  a t  t he  t i p  

of cracks and s l i p  bands are f i rs t  studied. 

p l a s t i c  cracks under ex terna l  loading i s  then examined. Finally,  by 

employing the  appropriate f r ac tu re  c r i t e r i a ,  t he  c r i t i ca l  f r ac tu re  load 

can be determine$ as a function of material parameters. 

The extension of elastic- 

In  the following sections,  t h e  Dugdale model of an e l a s t i c -p l a s t i c  

crack is  first introduced (Section I, 3). 

concept of continuously d i s t r ibu ted  d is loca t ions  (Section I. 4), Bilby, 

By combining t h i s  model w i t h  the  

1 



Cottrell and Swinden were ab le  t o  develop a dis locat ion model of an 

e l a s t i c -p l a s t i c  crack. 

analysis  t o  study t h e  fracture of composite materials. 

mathematical procedure involved and t h e  underlying physical significance 

of t h . i s  model are given i n  Section 1.5. 

This dis locat ion model i s  employed i n  t h e  present 

An out l ine  of t h e  

In the  dis locat ion model, stresses a r i s i n g  from three d i f f e ren t  

kinds of sources are e s sen t i a l  f o r  determining the  equilibrium configura- 

t i o n  of dis locat ions representing t h e  crack. 

a t  a point due t o  a l l  t he  dis locat ions i n  the array.  locat ion stress 

The e f f ec t  of inhomogeneity on t h e  e l a s t i c  f i e l d  of dis locat ions has been 

taken i n t o  account i n  cd. The second kind of stress, 

tence stress t o  t h e  motion of dis locat ions exerted by the  l a t t i c e .  

The f i rs t  kind i s  t h e  dis-  

Od 

i s  the resis- 

St ress  

uO, 

i s  considered t o  be iden t i f i ed  w i t h  t he  lower y ie ld  stress of t he  ma- 

Th i s  i s  because t h e  lower y ie ld  stress is  the  stress a t  which 

OO 

terial .  

LCders bands spread, The t h i r d  kind i s  the stress on dislocations due t o  

external ly  applied loadings. 

stress due t o  an uniformly applied stress, 

Stresses  on dis locat ions arise from i n t e r n a l  and external  sources other 

than those mentioned above can readi ly  be included i n  the  stress terms 

A c r i t i c a l  examination of t h i s  e f fec t ive  

aa, i s  given i n  Chapter 11. 

and oa respectively.  

In  Chapters I11 and I V  a t t en t ion  i s  focused on t h e  behavior of 

e l a s t i c  cracks and dis locat ion arrays i n  two-phase systems. 

under consideration i s  made up of two half-planes w i t h  d i f fe ren t  e l a s t i c  

The m e d i u m  

constants and welded together a t  t h e  interface.  

s ingu la r i t i e s  a t  t h e  t i p  0% cracks and dis locat ion pileups are of primary 

in t e re s t .  

The types of stress 

2 



Experiences gained i n  these invest igat ions are e s s e n t i a l  i n  extend- 

A study of ing  the  r e s u l t s  t o  t h e  examination of e l a s t i c -p l a s t i c  cracks. 

t h e  s t a t i c  extension of e l a s t i c -p l a s t i c  cracks under ex terna l  stresses 

and the determination of f r ac tu re  load are presented i n  Chapter V. 

Finally,  attempts are made t o  take i n t o  consideration the  effect of 

dimension of the const i tuent  phases on the  f r ac tu re  behavior. The second 

phases considered are i n  the forms of a surface f i l m  and a lamina embeded 

i n  t h e  matrix phase. 

A flaw diagram showing t h e  systematic formulation of the present 

invest igat ion i s  presented i n  Fig. 1-1. 

2. Modes of Fracture 

The r ed i s t r ibu t ion  of stresses i n  bodies caused by t h e  introduction 

of a crack i s  one of the  e s s e n t i a l  fea tures  i n  f r ac tu re  mechanics. The 

stress f i e l d s  near crack t i p s  are c lose ly  associated w i t h  the  l o c a l  mode 

of deformation which can be divided i n t o  three  types a s  i l l u s t r a t e d  i n  

Fig. 1-2 [I-]. 

Mode I, the  opening mode, i s  characterized by l o c a l  displacements 

i n  which the  crack surfaces move d i r e c t l y  apa r t  (symmetric w i t h  respect 

t o  the x-y and x-z planes).  

Mode 11, t h e  edge sliding.mode, i s  associated w i t h  displacement i n  

which the  crack surfaces s l i d e  over one another perpendicular t o  t h e  lead- 

ing  edge of t h e  crack (symmetric w i t h  respect t o  t h e  x-y plane and skew- 

symmetric with respect  t o  the  x-z plane). 

3 
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X X 

MODE I MODE I1: MODE Il l  

Fig. 1-2. THJ3 BASIC MODES OF CRACK SURFACE DISPLACESIENTS [I]. 
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Mode 111, t h e  t ea r ing  mode, t h e  crack surfaces  undergo anti-plane 

shear  and slide with respect  t o  one another p a r a l l e l  t o  t h e  leading edge 

(skew-symmetric with respect t o  t h e  x-y and x-z plane). 

3. Dugdale Model of a Crack 

In  an inves t iga t ion  of static y ie ld ing  a t  t h e  ends of ex is t ing  s l i ts  

i n  s t re tched  plates ,  Dugdale observed y i e ld  zones confined t o  a very nar- 

row band lying along t h e  l i n e  of t h e  sl i t  121. 

Dugdale f u r t h e r  provided an ana lys i s  of t h i s  problem which i s  based 

upon t h e  following th ree  hypotheses: 

a. The material i n  t h e  yielded zone i s  under a uniform t e n s i l e  

yield stress Y. 

b. The thickness of t h e  yielded zone i s  so small t h a t  t h e  e l a s t i c  

region outs ide may be regarded as bounded i n t e r n a l l y  by a f lat-  

tened e l l i p s e  of length 2(c+s), where c i s  t h e  half-length 

of t h e  slit,  and s t h e  length of t he  p l a s t i c  extension. 

c. The yielded zone i s  of such a length t h a t  t h e  stress a t  the 

end of it i s  f i n i t e .  

Under these hypotheses t h e  stress d i s t r ibu t ion  f o r  t h e  crack and 

i t s  associated p l a s t i c  zone as shown i n  Fig. 1-3 may be determined by 

superposition of t h e  th ree  stress states shown i n  Fig. 1-4. 

t i o n  of states 1 and 2 leads t o  free crack surfaces. Then t h e  state 3 

The combina- 

i s  needed t o  impose t h e  yield stress on t h e  p l a s t i c  zones. The problem 

of a s t r a i g h t  cut loaded over p a r t  of i t s  edge has been examined by 

Muskhelishvili [3]. H i s  stress functions w e r e  used by Dugdale i n  t h e  

analysis .  
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Fig. 1-4. COMPONENT STRESS STATES FOR DUGDALE CRACK E41. 



By observing t h a t  t h e  stress should be f i n i t e  a t  t h e  t i p  of t h e  

p l a s t i c  zone, Dugdale obtained a r e l a t ion  between t h e  applied load and 

t h e  length of plastic zones as: 

S 2 f l  - =  2 s i n  ( E )  . a 

It w a s  fu r the r  pointed out by Goodier and Field [4] t h a t  t h e  i m -  

posi t ion of t h e  f in i t eness  condition does insure t h e  stress component 

Q 

stress and t h e  stress along t h e  l i n e  of crack i s  everywhere within t h e  

y i e ld  condition. 

a t  t h e  t i p  of t he  p l a s t i c  enclave t o  be not grea te r  than t h e  y ie ld  
YY 

Dugdale's model of crack has a reasonable physical basis and agrees 

w e l l  with h i s  experimental r e s u l t s  as*shuwn i n  Fig. 1-5. 

4. The Equilibrium of Continuously Distributed Dislocations 

To circumvent t h e  d i f f i c u l t i e s  inherent i n  t h e  d iscre te  dis locat ion 

formulations as usual ly  encountered i n  dis locat ion p i l e  up problems, t h e  

concept of continuous dis locat ions w a s  introduced [10,11], 

thod of calculation, d i sc re t e  dis locat ions with f i n i t e  Burgers vectors 

are replaced by continuously d is t r ibu ted  dis locat ions with inf in i tes imal  

Burgers vectors. 

i s  t h e  same as t h a t  of t h e  d i sc re t e  configuration. This technique i s  

va l id  provided t h e  separation distances between dis locat ions are compar- 

ab le  t o  t h e  width of dislocations.  

In  t h i s  me- 

The t o t a l  Burgers vector of t h e  continuous d is t r ibu t ion  

Suppose there  are n discrete dis locat ions on a s l i p  plane i n  t h e  

domain D, each having Burgers vector of magnitude b. To replace these 

9 
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by an i n f i n i t e  number of dis locat ions with inf in i tes imal ly  small Burgers 

vector, w e  can define a d i s t r ibu t ion  function f (x )  such t h a t  f (x)dx 

i s  equal t o  t h e  sum of t h e  Burgers vectors of a l l  t h e  inf in i tes imal  d i s -  

locat ions t h a t  l i e  on t h e  s l i p  plane between t h e  posi t ions x and x+dx. 

To f ind  t h e  static equilibrium configuration of dis locat ions a t  

(x,O) i n  t h e  domain L, we need t o  take i n t o  consideration a l l  t h e  

stresses act ing on each dislocation. 

due t o  a dis locat ion a t  x=t and t h e  stress a(.) due t o  sources other 

than dis locat ions i n  t h e  domain L. Consequently, a t  equilibrium, it 

requires 

These can be the  stress ad(x,t)  

Cd(X, t )  f ( t )  at  + a(x) = 0 . 1 (1.4-1) 

The above equation usual ly  has the  form of a singular i n t eg ra l  

equation. A method of solving f ( t ) ,  t he  equilibrium configuration of 

t h e  continuously d is t r ibu ted  dislocations,  i s  outlined i n  Appendix A. 

5. Bilby, C o t t r e l l  and Swinden Model of an Elas t ic -Plas t ic  Crack 

Dislocations are as usefu l  f o r  discussing f rac ture  as f o r  p l a s t i c  

deformation [?I.  
sponding points  on opposite faces i s  less than Hooke’s l a w  predicts,  f o r  

t h e  given displacements between these points. 

na tura l  means f o r  including such regions within t h e  framework of l i n e a r  

e l a s t i c i t y .  

In  both s l i p  planes and cracks t h e  stress between corre- 

Dislocations provide a 

By means of Volterra-Somigliana dis locat ions a uni f ied  description 

can be given of various types of cracks i n  elastic and e l a s t i c -p l a s t i c  

11 



sol ids .  These dis locat ions need not be crystallographic and can ex i s t  i n  

any elastic body, whether c rys t a l l i ne  o r  not. L e t  such a dis locat ion l i e  

along t h e  z axis as i n  Fig. 1-6, and take  a circuit M t o  N around it. 

The Burgers vector b of t h e  dis locat ion i s  defined by t h e  l i n e  in t eg ra l  

of t h e  gradient of e l a s t i c  displacement along t h i s  contour, i.e. 

- 

6 = / g i s .  

When 

when perpendicular, it i s  of edge type. 

'-d i s  parallel t o  t h e  z axis,  t h e  dis locat ion i s  of screw type; 

Fracture i s  a form of nonlinear mechanical behavior. The deviation 

from Hooke's l a w  may come from rupture of atomic bonds between crack 

faces, as i n  simple b r i t t l e  f racture ,  o r  from p l a s t i c  yielding a t  t h e  end 

of t h e  crack, as i n  duc t i l e  substances. 

side t h i s  region a t  low applied stresses. 

Hooke's l a w  i s  obeyed w e l l  out- 

In  view of t h e  s imi l a r i t y  of associated displacements between dis-  

locat ions and cracks, t h e  elastic f i e l d  of t h e  three  modes of cracks can 

be represented by appropriate d i s t r ibu t ions  of dislocations.  

depicted i n  Fig. 1-7. Consequently, w e  can use l i n e a r  e l a s t i c i t y  every- 

where by representing t h e  nonlinear region as a packet of dislocations.  

T h i s  i s  

To take i n t o  account t h e  unstable growth of cracks and t h e  p l a s t i c  

deformation associated with cracks i n  duc t i l e  materials, Co t t r e l l  16 ] 

postulated t h e  following modes of deformation. 

I n  a "cumulative" mode of f racture ,  f o r  a constant l a w  of force be- 

tween separating faces, t h e  primary group of dis locat ions i s  geometrically 

12 



Fig. 1-6. DEFINITION OF A DISLOCATION [51. 
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d is lo ca t i o ns 

( 0 )  

Screw dislocations 

(d 

Fig. 1-7. TENSILE (a) AND SHEAR (b AND e )  CRACKS REGARDED 
AS GROUPS OF EDGE (a AND b ) AND SCREW (c  ) DISLOCATIONS [5  1. 
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su f f i c i en t  of itself t o  complete t h e  t o t a l  f racture ,  merely by running t o  

t h e  far end of i t s  plane. 

t h e  applied stress needed.to keep t h e  dis locat ions moving diminishes as 

t h e  dis locat ions move and multiply. 

This i s  an unstable mode of f racture ,  i.e., 

In  a "noncumulative" mode of f racture ,  each incremental growth of 

t h e  p l a s t i c  zone requires  t h e  in jec t ion  of more dis locat ions i n t o  t h e  s l i p  

l i n e s  and thus push t h e  exis t ing dis locat ions fu r the r  across the  section. 

Meanwhile, t h e  applied stress has t o  be increased correspondingly, reach- 

ing t h e  general  yield stress when t h e  p l a s t i c  zone crosses the  whole load 

bearing section, so becoming general-yield. 

By combining t h e  above idea with t h e  Dugdale model of a crack, Bilby, 

Cot t re l l ,  and Swinden were able t o  solve the  problem of t he  spread of 

p l a s t i c  y ie ld  from a notch [7,8,9]. 

e l a s t i c  medium with shear modulus G 

c -  yz - 

locat ion l i n e s  lying p a r a l l e l  t o  t h e  z ax i s  i n  t h e  x-y plane. 

s i s tance  stress t o  the  motion of dis locat ions i s  taken t o  be 

i n  t h e  region 1x1 < c and cl(> ca) i n  -a < x < -c and c < x < a. 

When co = 0 the  region 1x1 < e represents a f r e e l y  sl ipping crack and 

t h e  dis locat ions beyond - f c  represent p l a s t i c  s l i p  a t  the  ends of such a 

crack. 

They considered an i n f i n i t e  i so t ropic  

subjected t o  uniform shear stress 

a t  i n f i n i t y  and containing a d i s t r ibu t ion  of long s t r a igh t  dis- 

The re- 

coo(< CT ) a 

The problem i n  t h e  theory of continuous d is t r ibu t ion  of disloca- 

t i ons  i s  most e a s i l y  solved by se t t i ng  up t h e  i n t e g r a l  equation which 

expresses t h e  requirement t h a t  t h e  resu l tan t  shear stress on any disloca- 

t i o n  i n  t h e  d i s t r ibu t ion  is zero when t h e  system i s  i n  equilibrium [10,11]. 



L e t  f (t) be the  d i s t r ibu t ion  function of dis locat ions a t  x=t. 

Using t h e  concept of i n f in i t e s ima l  d i s loca t ions  introduced i n  Section 1.4, 

t h e  shear stress a t  (x,O) due t o  t h e  d is loca t ion  a t  ( t ,O) i s  

A f ( t )  d t  
x- t CJ (x) = Y= 

where A=Gb/2x and b i s  the  magnitude of Burgers vector of dis locat ions.  

Hence, a t  equilibrium, it requires  

where a(.) = sa - C J ~  f o r  1x1 < c, and CJ(X) = aa - 9 for c < 1x1 < a. 

By applying t h e  technique outlined i n  Appendix A, t he  above singu- 

lar i n t e g r a l  equation can be inverted and t h e  solut ion i s  found to be: 

Dl - [cosh -1 m -1 m f(4 = 2 + nl - cosh 
T C A  

2 2  where m = (a - c )/a and n = c/a. Figure 1-8 shows the  quant i ty  

x Af(x)/(a -cr ) as a function of x f o r  a = 2c. It i s  assumed i n  t h i s  

model t h a t  p l a s t i c  re laxat ion a t  crack t i p s  i s  caused only by in jec t ion  

of d i s loca t ions  i n t o  t h e  p l a s t i c  zone. The form of t h i s  d i s t r ibu t ion  

function agrees with qua l i t a t ive  expectations. 

f o r  i n  plane shear mode of crack where edge dis locat ions are used. 

2 
1 0  

The same analysis  holds 
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Fig. 1-8. DISTRIBWION OF DISLOCATIONS ALONG A SKEARED SLIT 
( 1  X I  <c) AND ITS  ASSOCIATED YIELD ZONES (c<] x] <a) [8]. 
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The necessary condition 

i n t e g r a l  ~ q .  (1.53) leads t o  

[12] f o r  the exis tence of solut ion of t h e  

the  r e l a t i o n  betw 

This condition i s  equivalent t o  Eq. (1.34) which w a s  based upon the  

f in i t eness  of stress a t  t h e  t i p  of p l a s t i c  zones. 

Using t h e  theory of a per fec t  p l a s t i c  sol id ,  Hult and McClintock 

[14] have considered the  p l a s t i c  re laxat ion a t  the t i p  of a sharp notch 

of depth c i n  a semi- inf ini te  medium x > - 0 subjected t o  simple shear 

i n  ant i -plane s t r a i n .  A comparison of lengths of y i e ld  zones as deduced 

from t h e  d is loca t ion  theory and from Hult and McClintock's work i s  shmn 

i n  Fig, 1-9. The numerical r e s u l t s  from the two cases are i n  good agree- 

ment, w i t h  a difference of less than f i v e  percent. The p l a s t i c  zone con- 

s idered by Hult and McClintock i s  a c i r c u l a r  region a t  t he  crack t i p .  

Since t h i s  i s  very d i f f e ren t  from t h e  t h i n  p l a s t i c  zone considered i n  t h e  

d is loca t ion  model, it would appear t h a t  t h e  length of t h e  p l a s t i c  zone i s  

in sens i t i ve  t o  t h e  shape. 

The d is loca t ion  model of t h e  e l a s t i c - p l a s t i c  s l i t  thus agrees i n  

i t s  predict ion of t h e  length of p l a s t i c  zone as a function of stress 

both w i t h  t h e  experiment on t h i n  s ets and w i t h  a treatment by c l a s s i c a l  

p l a s t i c i t y  theory. 

he r e l a t i v e  displacement @(x) of the  pos i t ive  side of t h e  s l i p  

t o  t h e  negative can be obta i  

on (1.3-4). Thus 

by in tegra t ion  of the 
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(105-6) 
2 A p l o t  of t h e  function sc A@(x)/b(cl-mo)c i s  shown i n  Fig. 1-10 f o r  

a = 2c. Finally, let  x=c i n  (1.5-6) w e  have t h e  relative displacement 

a t  t h e  t i p  of a f r e e l y  s l ipp ing  crack, 

a 
= Rn (7) . sc*AQ( c )  

2cb(ul - m0) (I. 5-71 

Equations (I. 15-3) and (I. 15-7) relate t h e  important parameters of 

t h e  problem, namely, t h e  applied stress, t h e  crack opening displacement, 

t h e  crack length and t h e  extension of p l a s t i c  zone. 

mum crack opening displacement f o r  a region of l o c a l  yielding of given 

s ize ,  t h e  c r i t i c a l  crack length can be determined from these  t w o  

equations. 

To  achieve a maxi- 

It i s  a l s o  noted t h a t  a t  l o w  applied stress Eq. (1.5-7) reduces t o  

t h e  familiar form of Orowan [l5] and Irwin [16] equation of fracture 

stress : 
\ 

The p l a s t i c  work d iss ipa ted  i n  propagating t h e  crack i s  found t o  be 
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Fig. 1-10. S m A R  DISPLACEBENT ALONG THE SLIT AND YIELD 
ZONE 181. 
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CHAPTER I1 

STRESS DISTRIBUTION I N  TWO-PHASE SYSTEMS SUBJECTED 
TO UNIFORM EXTERNAL LOADINGS 

1. Introduction 

The study of t h e  behavior of cracks and dis locat ion arrays and t h e i r  

in te rac t ions  with various heterogeneous elements i n  materials i s  of basic 

importance t o  t h e  understanding of composite materials. Among t h e  prob- 

lems examined, pa r t i cu la r  emphasis has been given t o  the in te rac t ion  be- 

tween screw dis locat ions and phase boundaries i n  a composite so l id  formed 

by t w o  elastic half-planes having d i f f e ren t  shear moduli [17,18,19,20]. 

In  a recent paper [21], it was pointed out by Smith t h a t  t h e  above 

r e s u l t s  cannot be used t o  describe t h e  behavior of a bimetallic complex 

subjected t o  a uniform anti-plane shear stress at  in f in i ty .  Owing t o  t h e  

necessi ty  of sa t i s fy ing  the  compatibil i ty conditions a t  t h e  interface,  t he  

author claimed t h a t  a realistic discussion of these types of problems i s  

achieved only when one of t he  materials i s  completely surrounded by t h e  

other. However, t h i s  i s  not necessar i ly  t rue .  

On t h e  other  hand, t he  problem of b i c rys t a l s  subjected t o  t e n s i l e  

and compressive stress or s t r a i n  on the  surfaces i s  of i n t e r e s t  t o  t h e  

study of in te rac t ion  of s l i p  systems i n  two phases [22,23]. 

of such a problem a l s o  simulates t he  elastic f i e ld  i n  a material with one- 

dimensional f luctuat ion of composition. The s t r a i n  energy induced i n  such 

a case i s  of considerable importance t o  a c r i t i ca l  study of t h e  free energy 

change associated with t h e  process of a spinodal decomposition [24]. 

thermore, t h e  elastic f ie ld  a t  the  in te r face  has t o  be considered f o r  a 

The solution 

Fur- 
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meaningful discussion of t he  problems involving cracks and d is loca t ion  

a r r ays  a t  phase boundaries. 

The a i m  of t h i s  chapter i s  t o  examine i n  d e t a i l  t he  e f f e c t  of i n -  

homogeneity on stress d i s t r ibu t ion  under various loading conditions. 

2. St re s s  Dis t r ibu t ion  i n  a €5-material P la t e  Under Uniform Anti-plane 
Shear S t r e s s  or  S t r a in  

a. Analysis 

Consider a bi-material p l a t e  of thickness 2h (Fig. 11-l), 

composed of two e l a s t i c  media welded together  a t  x=O. The shear modulus 

i s  G1 f o r  x > 0 and G2 f o r  x < 0. A uniform shear stress 

i s  appl ied a t  t h e  upper and lower surfaces of t h e  p la te .  

“yz=% 

Assuming per- 

f e c t  bonding a t  t h e  weld, so t h a t  

placement have to be continuous a t  t h e  interface.  

uxz and t h e  z-component of the  dis- 

L e t  W1 and W2 be the  z-component of displacements i n  re- 

gions x > 0 and x < 0 respectively.  The equilibrium of s t r e s ses  re- 

qui res  t h a t  Wl and W2 s a t i s f y  the  Laplace equation. A boundary value 

problem i s  then set up f o r  t h e  upper half  of the p l a t e  (Fig. 11-2). By 

making the  subs t i tu t ion  

(11.2-1) 

t he  problem can be rewri t ten with homogeneous boundary conditions. 

23 



Y 1 qZ = 0;; = constant 

qz = =constant 

Fig. 11-1. THE: COORDII!TATE SYSTEM OF A BI-MATERIAL PLATE 
UNDER UNIFORM ANTI-PLANE SHEAR STRESS. 
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v2w2= 0 

w2= 0 w,= 0 
(0,o) 

Fig. 11-2. THE BOUNDARY VALUE PROBLEM: OF THE UPPER HALF 
OF THE PLATE. 



The functions Ol and O2 are assumed i n  t h e  form o f  Fourier 

By employing t h e  cont inui ty  conditions series with unknown coef f ic ien ts .  

a t  t h e  in te r face ,  these  coef f ic ien ts  can be found. The r e su l t i ng  expres- 

s ions f o r  displacements are obtained as fo l lming :  

+ - y  
-2a k s i n  (n + 5)  1 n- (n + n) 1 w -An" ca 

G1 

a 

G hh2 n=O 1 n  

e h s i n  

} (11.2-2) 

1 1 

h 
2c k s i n  (n + 2) TC (n + z) Jcy An" ca 

G2 
w2 = f a s i n  e + - y  ( x < o )  

n=O G2hAE 

where 
k =  G2 - G1 

G2 + G1 

and 

1 
An = (n  + 2 )  Jr/h . 

The expressions f o r  stresses can readi ly  be obtained by d i f -  

f e ren t i a t ion  of t he  above equations 

1 1 -20- k s i n  (n + F) n- (n + 5)  w -An" 
( x  > 0) a 

+ % e h cos 

n=O 

0 - =  (11.2-3) 
YZ 

1 1 2a k s i n  (n + 2)  n- (n + 5)  JrY An" 
(x < o )  a e + aa h cos 

n=O 
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and 

2cak s i n  (n  + 2) 1 (n + 2)  1 fiy -Anx 
e ( x  > 0 )  h s i n  1 ’  

n=O 

- - (11.2-4) 5xz 

S t r e s s  contours of both CT and 5 i n  a p l a t e  of 2 cm 

t h i c k  under un i t  applied shear stress are shown i n  Fig. 11-3 and 11-4 
xz Y Z  

respec t ive ly  f o r  k = -.4. 

i s  induced a t  t he  in t e r f ace  purely due to t h e  inhomoge- cxz 

n e i t y  of t h e  medium and f a l l  off exponentially with t h e  dis tance from t h e  

in te r face .  An examination of these  contour l i n e s  shows t h a t  high concen- 

occurs a t  both ends of t h e  in te r face .  This  “;Cz t r a t i o n  of t h e  component 

can a l s o  be deduced from Eq. (11.2-4) by s e t t i n g  x=O and t h e  stress can 

be expressed i n  closed form as: 

(11.2-5) 

The var ia t ion  of r~ with y a t  the in t e r f ace  i s  shown i n  Fig. 11-5. 

The highly concentrated r~ near the  surfaces  of t h e  p l a t e  can be t h e  

xz 

xz 

primary cause of s p l i t t i n g  of t h e  in te r face .  

A s  t o  t h e  component cyz, it i s  noted t h a t  stress concentra- 

t i o n  takes  place i n  t h e  harder phase and around t h e  center  of t h e  
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t h e  in te r face .  Unlike cr t h i s  stress component i s  discontinuous 

across  t h e  in te r face .  

from t h e  in t e r f ace  cr 

of t h e  ex terna l ly  applied stress. 

xz’ 

A t  a d is tance  equal t o  t h e  thickness of t h e  p l a t e  

tends t o  become uniform and approaches t h e  value 
yz . 

Also of i n t e r e s t  i s  cr on t h e  middle plane of t h e  p la te .  By 
YZ 

s e t t i n g  y=O i n  Eq. (II.Z?-3), w e  obtain i n  closed form: 

(11.2-6) 

b. Conclusion 

Several i n t e re s t ing  fea tures  concerning t h e  in te rac t ion  of 

screw d is loca t ions  and phase boundary can be deduced from t h e  stress con- 

f igura t ions :  

(1) Consider the case where k < 0. The d i rec t ions  of com- 

ponent forces  ac t ing  on a left-hand screw dis loca t ion  are shown i n  Fig. 

11-6. The combined e f f e c t  of uxz and u i n  phase 1 f o r  
YZ 

= IJ > 0 tends t o  move left-hand screw d is loca t ions  toward t h e  phase 

boundary and onto t h e  plane y=O provided cross  s l i p  i s  possible. Mean- 

% y z  

while, left-hand screw d is loca t ions  i n  phase 2 are l i k e l y  t o  be nucleated 

a t  both ends of t h e  in t e r f ace  where the re  are high stress concentrations. 

These d is loca t ions  w i l l  be driven t o  the plane y=O and fu r the r  toward 

t h e  l e f t  end. A s  a result of these  motions, left-hand screw dis loca t ions  

tend t o  p i l e  up aga ins t  t h e  phase boundary near t h e  center  of t h e  p l a t e  
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i n  t h e  hard phase where crack nucleation i s  l i k e l y  t o  occur. 

hand, left-hand screw dis locat ions gl iding toward t h e  l e f t  end i n  phase 2 

w i l l  not form pileups. 

On the  other 

By repeating t h e  above invest igat ion f o r  opposite sense of 

loading and Burgers vector of dislocations,  it i s  found tha t  right-hand 

screw dis locat ions can p i l e  up a t  t h e  phase boundary a l s o  only i n  the  hard 

phase. The image e f f e c t s  on screw dis locat ions are not considered here. 

(2) It i s  a l s o  noted t h a t  t h e  stress 5 on the  plane y=O 
YZ 

near t h e  in te r face  tends t o  become uniform as t h e  p l a t e  thickness increases 

(Fig. 11-7). Equation (11.2-6) ind ica tes  t h a t  f o r  a th ick  p l a t e  u near 

t h e  in te r face  at tends t h e  constant values of ua(l-k) and ua(l+k) i n  

phases 1 and 2 respectively.  

f o r  lengths of cracks and dis locat ion arrays much smaller than t h e  physical 

e n t i t i e s  i n  consideration such as t h e  thickness of a b i c rys t a l  and t h e  d i -  

mension of a grain, constant stress on dis locat ions can be achieved by uni- 

formly applied ex terna l  stresses. This r e s u l t  indicates  t h a t  t he  conclu- 

sion reached by Smith i s  not qu i te  r ight .  The magnitude of t h i s  stress i s  

effected considerably by the  r i g i d i t i e s  of t h e  consti tuents.  This finding 

i s  especial ly  s ign i f icant  i n  t h e  la ter  discussion of problems involving 

crack crossing a phase boundary. 

Y= 

This leads t o  t h e  important conclusion t h a t  

The stress f i e l d  on the  middle plane of the  p l a t e  i s  of 

considerable importance because it simulates t h e  stress f i e l d  far from the  

boundary when t h e  p l a t e  becomes very thick.  

(3) ayz i n  phase 1 on t h e  plane y=O decreases as the  r ig-  

i d i t y  of t h e  phase increases. 

middle plane when k=l. Consequently, uniformly applied shear stress 

There i s  v i r t u a l l y  no s t r e s s  on t h i s  
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can not cause screw d is loca t ions  t o  p i l e  up i n  phase I against  a r i g i d  

second phase. 

(4) I n  case a‘ uniform shear s t r a i n  E = E i 
YZ a 

t h e  surfaces of t h e  p la te ,  t h e  elastic solut ion i s  t r i v i a  

component of displacement i s  uniform and W = cay. 
ponent of displacement w i l l  be 

f o r  x < 0. 

The only stress com- 

f o r  x > 0 and (r - 
(ryz = G1ca yz - G2Ea 

( 5 )  Now consider t h e  case where a uniform s t r a i n  E = E 
YZ a 

i s  appl ied a t  t h e  surfaces of a p l a t e  composed of two anisotropic  media. 

The e l a s t i c  solut ion of t h i s  case i s  believed t o  l i e  within t h e  two ex- 

treme cases, namely, a bi-mater ia l  p l a t e  under uniform s t r a i n  and stress. 

3. S t r e s s  Distr ibut ion.  i n  a Bi-material P l a t e  Under Uniform 
Compressive S t r e s s  

a. Analysis 

The e l a s t i c  solut ion f o r  a bi-material  p l a t e  (Fig. 11-8) under 

uniform compressive stress i s  characterized by t h e  complications due t o  

the  presence of Poisson’s r a t i o  e f fec t .  For a welded in t e r f ace  t h e  con- 

t i n u i t y  condition requires  t h a t  t h e  stress components 

placement components u p  U2 and V1’ V2 i n  t h e  x and y d i rec t ions  

respectively,  be continuous across  t h e  plane x=O. The subscr ipts  1 and 

axx’ %y and dis- 

2 denote regions f o r  which x > 0 and x < 0 respectively.  

S t r e s s  functions f o r  general  loadings on a semi- inf ini te  s t r i p  

under plane stress condition have been discussed by Iyengar and A l w a r  [25, 

261. The boundary 

conditions f o r  both regions are: 

This technique i s  employed i n  t h e  following analysis.  
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Fig. 11-8. THE COOFDINAm SYSTEM OF A BI-MATERIAL PLATE 
UNDER UNIFORN COMPRESSIVE STRESS. 



a t  x = o  

u1 = ‘U2 

= v2 I 

u ) = u  ) = o  . 
x Y 1  x Y 2  

(11.3-1) 

(11-3-2) 

The unknown normal and shear stresses at t h e  in t e r f ace  are assumed i n  t h e  

form of Fourier series with unknown coef f ic ien ts  t o  be determined from t h e  

continuity conditions. 

L e t  Ql and a)2 be t h e  Airy stress functions i n  regions 

x > 0 and x < 0 respectively. All w e l l  known theorem f o r  constructing 

biharmonic function i s  t h a t  f o r  given functions f(x,y,z) and g(x,y,z) 

harmonic i n  a simply connected region, then Q = fx  + g i s  biharmonic i n  

t h e  same region [27]. 

of t h e  stress components of t h e  p la te ,  t h e  following stress function i s  

constructed: 

By taking i n t o  consideration t h e  symmetry property 
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[ay sinh a y  - ( lWh coth a h )  cosh a y ]  da 
a cosh a h  

and C1 are unknown coef f ic ien ts  and am = mfi/h. 
m' Lm where A 

4 It can be shown that V cP1 = 0 i s  sa t i s f i ed .  Since the  p l a t e  

has f i n i t e  thickness and is  i n f i n i t e l y  extended i n  the  x d i rec t ion  both 

d i s c r e t e  and continuous eigenvalues occw i n  t h e  above expression. 

The stress components i n  the region x > 0 can readi ly  be 

obtained by d i f f e ren t i a t ion  of iP1: 

*mX = - 2 [Am(ltolmx) + Lmamx]- e 
' O s  amy 

m=l ,  2 

co c,(a) cos ax 
Lay sinh a y  + ( l - a h  coth a h )  cosh a y ]  dol +i cash a h  

- a x  
m YY = ca + 2 [Lm(amx-2) + Am(amx-l)] e cos a m y 

m=l,  2 



- a x  
(r = 2 [Lm(l-amx) - Amamx1 e m s i n  aiy 
xy 

m=l, 2 

w C,(CX) s i n  ax 
+ -6 cosh a h  b y  eosh ay - a h  coth a h  s inh ay]  da . 

(11.3-6) 

Bm' and Cl are changed t o  my Lm Q2 i s  similar t o  (P1 except t h a t  A 

-L and C2 respectively. m 

By considering t h e  stress boundary conditions i n  both phases, 

w e  obtain t h e  following r e l a t ions  

A = -K + 16m 'IC * 2 ( -l)m+r ArrM(r,m) m m 
ml, 2 

+ 8m 'IC (-l)m+r LrrN(r,m) 

F l y  2 

B = -K + 16m R 5 (-l)m+r BrrM(r,m) m m 
ml,2 

- 8m2x2 f (-1)"" LrrN(r,m) 
L-l 

(1103-7) 

(11.3-8) 
r=l,2 
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where 

3 
(11.3-9) 

x tanh x dx 
2 2 2 2  2 2 2 2  s inh 2x 2x ) ( x  + m x >  (x +r.> 

(11.3-10) 

The details  of t h e  der ivat ion are too  tedious t o  be shown here. The dis- 

placement components can be derived from t h e  stress functions by t h e  

method of Coker and Filon [28]. 

i n t e r f ace  requires  

The compatibil i ty of displacements a t  the  

l - V 1  v -1 2Bm 2 

El E2 E2 
- + - + Lm( EL + -) = 0 (11.3-11) 



(11.3-12) 

where 

(11.3-131 x tanh x dx 
2 2 2  2 2 2 2  2x ) ( x  + m s C ) ( x  + r a >  

Q(r,m) = + 
sinh 2x 



Equations (11.3-7), (11.3-83, (11.3-11) and (11.3-12) give a system of 

l i n e a r  equations t o  determine Am, Bm, Km and Lm. The constants 

and C2 can then be evaluated by 

2 1 2 2  2 2  
Am(ah) m + - L (m nc 2 m  + 3 h ) m 

C,(a) = 4h (-l)m 2 2  2 2 2  
(mnc  + a h  ) m=l ,  2 

1 
(l + sinh ZKxh 

2 2  
B (ah)2 m - - 2 m  L (m2fi2 + 3 h ) m m  

2 2 2  C,(a) = 4h (-1) 
m=l ,  2 (m2fi2 + a h ) 

1 

It i s  noted t h a t  t h e  above solution d i f f e r s  from t h a t  of a bimetal l ic  

p l a t e  under uniform tension cr - by changing t h e  term (-1)"+' 

2cra(l/E1 - 1/E2) i n  Eq. (11.3-12) t o  (-1)"'l 2cra(v2/E2 - vl/El). 

xx - 

Consider t he  case i n  which a 2 cm th ick  p l a t e  i s  subjected 

t o  un i t  compressive stress on the  surfaces. 

and Owing t o  t h e  slowness of t he  convergence of series 

i n  Eqs. (11.3-7), (11.3-8), ( I I -3- l l ) ,and (II .3-l2),  four  leading terms 

It i s  assumed t h a t  E1/E2 = 2 

v1 = v2 = l/3. 

of each coef f ic ien t  are evaluted. The implication of t h e  r e su l t s  are 

discussed i n  t h e  following section. 
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b. Conclusion 

induced around the  plane x=O 

The maximum of t h i s  normal 

The magnitude of t h i s  

crxx, (1) The t e n s i l e  stress 

tends t o  cause debonding at t h e  interface.  

stress occurs a t  both ends of the in te r face .  

t e n s i l e  stress the re  i s  about 9 percent of t he  applied stress. 

center  of t h e  p l a t e  i s  approached, t h i s  t e n s i l e  stress diminishes and 

A s  t h e  

f i n a l l y  becomes a compressive stress. 

(2)  The magnitude of shear component cr a t  t h e  in te r face  
Xy 

can be as high as 25 percent of the appl ied stress as shown i n  Fig. 11-9. 

This shear component a l s o  fa l l s  off w i t h  t h e  dis tance from the  in te r face .  

In  composite materials with weakly bonded in te r faces ,  t h i s  shear com- 

ponent can be the  primary cause of s p l i t t i n g  of phase boundaries. 

sequently, t h i s  might lead t o  crack blunting a t  t he  in te r face .  

Con- 

Both normal and shear stresses a t  t h e  phase boundary are 

The e f f e c t  becomes more d i s -  caused by the inhomogeneity of t h e  medium. 

t i n c t  as the differences i n  e l a s t i c  constants of t h e  two const i tuent  

phases increase.  

(3) The normal stress component cr on t h e  middle plane 
YY 

of t he  p l a t e  var ies  w i t h  p l a t e  thickness a s  shown i n  Fig. 11-10, It i s  

noted tha t  a near ly  constant stress i s  a t t a ined  i n  the  v i c i n i t y  of t he  

in t e r f ace  as the  p l a t e  becomes thick.  Consequently, i n  discussing cracks 

and edge d is loca t ion  pileups ahead of a bi-material interface,  a uniformly 

appl ied stress field can be achieved i n  t h i s  mnner. 
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(4) One fur ther  implication of t h e  present solution w a s  

pointed out by Hirth, T i l l e r  and Pound [24] i n  discussing the  mathemat- 

i c a l  theory of spinodal decomposition. If a f i n i t e  system underwent an 

one-dimensional s inusoidal  f luc tua t ion  i n  composition, t h e  resu l tan t  

configuration would resemble t h a t  shown i n  Fig. 11-lla. This i s  an i m -  

provement of t h e  theory or ig ina l ly  proposed by Cahn 1291. In  Cahn's 

theory, it w a s  assumed t h a t  no y and z displacements are allowed 

(Fig. 11-l lb) .  This i s  ce r t a in ly  unrea l i s t ic .  

An exact e l a s t i c  solut ion of a non-homogeneous medium 

with s inusoidal ly  varying e l a s t i c  constants would be very complicated. 

However, t h e  present solution does simulate t h e  e l a s t i c  f i e l d  around the  

in te r face  i n  Fig. 11-lla. It indicates  t h a t  an exact solution for such 

a relaxed configuration w i l l  y i e ld  a stress tensor  t h a t  contains both 

normal and shear components. These stress components would f a l l  o f f  ex- 

ponentially with distance from t h e  interface.  

Furthermore, an exact e l a s t i c  solution of t he  relaxed 

configuration i n  Fig. 11-lla, containing general  stress tensor, would 

lead t o  a revision of t h e  s t r a i n  energy calculat ion as proposed by Cahn. 
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CHAPTER I11 

ELASTIC CRPLGKS AT A BI-MATERIAL INTERFACE 

1. Introduction 

The a i m  of t he  present chapter i s  t o  discuss  the  stress f ie ld  about 

a crack perpendicular t o  a bi-material interface,  under t h e  three  modes of 

deformation. 

determines t h e  extent  of p l a s t i c  yielding and crack nucleation i n  the  

The stress concentration a t  the  t i p  of a crack i n  one phase 

neighboring matrix. 

subsequent blunting of crack t i p  a r e  possible. 

It a l s o  ind ica tes  i f  a s p l i t t i n g  of in te r face  and a 

Analyt ical  solut ions f o r  dis locat ion pileups a t  phase boundary i n  a 

two-phase system have been discussed by Barnett {20] and Kuang and Mura 

[ 3 O ]  f o r  d i f f e ren t  loading conditions. The mathematical procedures f o r  

analyzing these problems are equivalent t o  that of semi-infinite wedges. 

The present work deals  w i t h  t he  problem of e l a s t i c  cracks of f i n i t e  length. 

The displacement of crack surfaces has been represented by t h a t  of a con- 

t inuously d i s t r ibu ted  dis locat ions [3l]. The exact expression for applied 

stress on dis locat ions as discussed i n  Chapter I1 i s  employed i n  t h i s  

invest igat ion.  

2. Mode I11 Crack 

a. Dislocation Distr ibut ion F'unction 

Consider a plate composed of two semi-infinite s t r i p s  welded 

together  a t  t he  interface.  The coordinate axes are chosen t o  be the  same 

as t h a t  depicted i n  Fig. 11-1, L e t  G1 and G2 be t h e  shear moduli and 

v and v2 t h e  Poisson's r a t i o s  with reference t o  phase 1 and 2. A 1 
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crack of length L 

111-1). 

tinuous d i s t r ibu t ion  of in f in i tes imal  dis locat ions.  

i n  phase 1 i s  perpendicular t o  the  in te r face  (Fig. 

The e l a s t i c  f ie ld  of t h e  crack i s  represented by t h a t  of a con- 

It has been pointed out i n  Chapter I t h a t  th ree  kinds of 

stresses need t o  be considered i n  Aiscussing the  equilibrium configura- 

t i o n  of dis locat ions.  These are the  dis locat ion stress, ad, t he  effec-  

t i v e  stress on dis locat ions due t o  ex terna l ly  applied stress, 

t h e  f r i c t i o n  stress, 

aa, and 

When the  thickness of t h e  bi-material  p l a t e  i s  much l a rge r  than 

t h e  length of cracks i n  consideration, t he  stress f i e l d  of dis locat ions i n  

an i n f i n i t e  medium can be employed. 

cat ion of Burgers vector b be s i tua t ed  i n  x > 0 a t  (t,O). The l i n e  

d i rec t ion  i s  p a r a l l e l  t o  t h e  z-axis. 

weld, the stress f ie ld  due t o  the  dis locat ion is: 

L e t  a s ing le  right-hand screw d is lo-  

Assuming perfect  bonding a t  t he  

and 

= { 

(x  > 0) x- t k(x+t) 
2 2  

(x-t)' + y (x+t> + Y 

ayz = \ 

(111.2-1) 

(111.2-2) 

where k = (G2 - G1)/(G2 + G1). 
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Fig. 111-1. A MODE I11 CRACK PERPENDICULAR TO A BI-MATERIAL 
INTERFACE. 



On t h e  plane y=O, Eq. (111.2-2) reduces to :  

(111.2-3) 

The ef fec t ive  stress on t h e  middle plane due t o  a uniformly 

applied stress u = -ua i s  found t o  be -ua(l-k) a s  discussed i n  

Chapter 11. Inside t h e  crack, the resis tence stress, t o  the  motion 

of dis locat ions vanishes. 

Y= 

L e t  f (t) be the  unknown d is t r ibu t ion  function of dis locat ions 

of s t rength b. The force equilibrium on a s ingle  dis locat ion a t  (x,O) 

leads t o  the  following s ingular  i n t e g r a l  equation: 

L 2 3 1 ~ ~  (1-k) 
d t  + k i  fo x + t  d t  - = o  ( O < x < L ) .  

(111.2-4) 

The first i n t e g r a l  i s  understood t o  be a Cauchy pr inc ipa l  value intregal .  

The physics of t h e  problem requires t h a t  i s  unbounded a t  both ends 

of t h e  crack. 

f ( t) 

Equation (111.2-4) i s  su f f i c i en t  t o  determine t h e  solution f o r  

dis locat ions p i l i ng  up a t  one end. However, i n  discussing cracks, an 

addi t iona l  condition i s  needed i n  order t o  determine the  solution com- 

pletely.  Suppose dis locat ions ne i ther  leave nor en ter  t he  crack. Then 



t h e  l i n e  i n t e g r a l  of displacement along any closed c i r c u i t  not crossing 

t h e  crack region should vanish. 

The z-component of displacement a t  x > 0 due t o  a s ing le  

right-hand screw d is loca t ion  a t  t > 0 is: 

w(x,y,t) = 5 b [tan.L 5 + k t a n  ""-3 - x + t  (I11 2-5) 

Consider t h e  closed c i r c u i t  around t h e  crack (Fig. 111-2). 

displacements on t h e  upper and lower paths due t o  all t h e  d i s loca t ions  

in s ide  t h e  crack are: 

The r e su l t an t  

w(x, 4- E) = lL w(x, f E & )  f ( t )  at 

L 
W(x, - E )  = w(x, - c , t )  f ( t )  d t  (111.2-6) 

As E 40, t h e  t o t a l  displacement in tegra ted  along t h e  c i r c u i t  vanishes: 

a" w(x, - € )  dx  f lo W(X, + E )  dx  
L 

-6" -2b(1 + k )  [ aL f ( t )  dt] dx 

= o .  



x 

PATH OF INTEGRATION 

Fig. 111-2. PATH FOR I N T E R A T I O N  OF D I S P L A C m  AROUND TKE 
CRACK. 
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Consequently, it yie lds  

(111.2-7) 

In  fact, Eq. (111.2-7) i s  equivalent t o  the  compatibil i ty con- 

However, t h e  above condition can be deduced d i t i o n  i n  l i n e a r  e l a s t i c i t y .  

immediately from t h e  crack opening displacement consideration. 

i s  assumed t h a t  t he re  i s  no dis locat ion leaving nor entering the  crack, 

t h e  crack surfaces must c lose a t  both ends. Consequently, t h e  integrat ion 

of Burgers vectors of a l l  dis locat ions i n  t h e  crack vanishes: 

Since it 

lL b f ( t )  d t  = 0 . (111 2-8 ) 

This i s  iden t i ca l  with Eq. (III.2-7), as expected. Equations (111.2-4) 

and (111.2-7) are su f f i c i en t  t o  determine f (t). 

In teg ra l  equations w i t h  kernel  function of t h e  type 

be solved by t h e  very ingenious Wiener-Hopf technique [30,32,33,34]. An 

out l ine  of t h i s  method i s  given i n  Appendix B. 

some mathematical procedures involved, only the  e s sen t i a l  s teps  i n  solving 

Eqs. (111.2-4) and (111.2-7) are shown below. 

K(x-t) can 

To avoid t h e  very comber- 

v, Eq. (111.2-4) can be rewrit ten as: u and - = L e t  - = 
X t 

L L 

(111.2-9) 
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Further extend Eq. (111.2-9) t o  t h e  i n t e r v a l  L < x < o by defining t h e  

new function h(u) : 

1 ro dv = h(u)  ( l < U < W ) .  6’ fo u - v  dv + k a u + v  

(111.2-10) 

U 

v L e t  - = s and apply Mellin transform t o  t h e  var iab le  u i n  t h e  above 

two equations. 

form i n  terms of t h e  transform var iab le  LU: 

The transformed equations can be recas t  i n  t he  general  

where 

cU-1 
F+(w) = 6 v f ( v )  dv 

cU- 1 
H-(w) = /m h(u) u 

1 
du 

(111.2-11) 

and 
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2 
It 

Denoting u+=1 and cr = a = - s i n - l m 2 ,  it can be shown t h a t  

G+(w) 

non-zero i n  t h e  same s t r i p .  We are then looking f o r  t h e  unknown function 

F+(o) and H (a) which are a n a l y t i c a l  i n  t h e  ha l f  planes d > CT - and 

cr < a+ respect ively.  

- 
i s  regular i n  t h e  s t r i p  cr - < cr < a+ and K(w) i s  regular  and 

Equation (111.2-11) i s  i n  t h e  general  functional r e l a t ion  t o  which 

t h e  Wiener-Hopf technique can be applied. 

ou t l ined  i n  Appendix B, t h e  r e su l t i ng  expression i s  i n  t h e  form of 

Eq. (B-79. 

be determined by employing Eq. (111.2-7). 

By carrying out t h e  procedures 

I n  t h i s  expression, there i s  an unknuwn constant which has t o  

Final ly ,  t h e  so lu t ion  of t h e  d i s t r ibu t ion  function can be found: 

(rrr.2-12) 



The terms i n  the  first bracket of t h e  d i s t r ibu t ion  function 

The terms i n  expression correspond t o  those of a semi- inf ini te  wedge. 

t h e  second bracket are necessary due t o  the  unboundedness of f ( t )  a t  t=L. 

In  t h e  l imi t ing  case of an i n f i n i t e  homogeneous medium, k=O, 

Eq. (111.2-12) reduces to:  

t ‘a L - 2 t  f(T;) = - ( III. 2-13) 

i n  agreement with t h e  previous r e s u l t  [ 311. 

A s  pointed out i n  t h e  last chapter, t h e  stress which tends t o  

open t h e  crack vanishes when t h e  second phase i s  r ig id ,  i.e., k + 1 .  

Figure 111-3 depic t s  f ( t )  f o r  various values of k. Furthermore, when 

an uniform s t r a i n  E: = -E: i s  applied a t  t h e  p l a t e  surfaces the  solu- 

t i o n  i s  obtained simply by changing ca( l -k)  t o  G1ea i n  Eq. (111.2-12). 

YZ a 

I f ,  ins tead  of cracks, a double dis locat ion pi leup i s  consid- 

ered, t he  mathematical procedures employed above s t i l l  can be applied. 

ever, i n  t h i s  case a ce r t a in  f r i c t i o n a l  stress, 
(ro, 

on t h e  s l i p  plane. 

How- 

should be specif ied 

Th i s  only changes t h e  last t e r m  i n  Eq. (111.2-4). 

Finally, it needs t o  be pointed out t ha t  t h e  change of d i s t r i -  

bution function i s  small f o r  small var ia t ion  of G /G (Fig. 111-3). The 

p r a c t i c a l  implication of t h i s  r e s u l t  i s  t h a t  t h e  effect of inhomogeneity 

can be neglected f o r  small f luc tua t ion  of elastic constants. The e l a s t i c  

solut ion obtained from homogeneous medium can be used as a first approxi- 

mation f o r  these problems. 

2 1  
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b. S t r e s s  F ie ld  

The stress f ie ld  of t h e  crack i s  calculated from 

(III. 2-14) 

Making the  subs t i t u t ion  v = cosh-I (4) and in tegra t ing  i n  t h e  complex 

plane v = w + i@ as described by Barnett [20], stresses i n  the  

second phase can be obtained: 

0 0 

2 

sinh a w  s i n  a@ [- 0 0 

ua(l-k I sgn (Y) - 
fia s i n  fia s i n  - 2 

%z - 

t 

(cosh w s inh wo cosh a w  s i n  ago a 
2 2 0 0 

+ 
(s inh w + s i n  8,) 

0 

- cos go s i n  go sinh awo cos ago) 1 (111.2-15) 

ca cos ago + cos - 
0 2 -cosh a w  

ua(l  - k d )  

za Yz s i n  m s i n  - a 
0 - =  

cos go cosh a m  s i n  ago s i n  go 
0 

a 
2 2 (sinh mo + s i n  go) 

+ 

+ ctnhcoo sinh awo cos ago (5 - cos2 go)] 1 ( III. 2-16) 
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where 

1 
0 2  sinhzco = - 

and 

(111.2-17) L 2  2 2L 
((-) - 1) + (- s i n  e> 

P P 

r - 
2L 2 2 2 

s i n  go = ib - $1 +/((E) - 1) + (- P s i n  e )  

p and 8 are p l a r  coordinates as depicted i n  Fig. 111-1. 

A t  t he  t i p  of crack, i.e., L>> 1, Eqs. (111.2-15) and (111. 
P 

2-16) can be s implif ied as 

and 

(111.2-19) 

(111.2-20) 

L a  The stress s ingu la r i ty  a t  t h e  t i p  of t h e  crack i s  of t h e  type 

which becomes t h e  inverse square root type only when k-0, namely, t h e  

two phases are iden t i ca l .  

a t  t he  t i p  of a f i n i t e  crack i s  smaller than t h a t  of a semi- inf ini te  

wedge [20] by t h e  f a c t o r  of (1-a). 

(p) 

It i s  also noted t h a t  t h e  stress concentration 

Figure 111-4 depic t s  t h e  var ia t ion  of (5 /cT with the  dis- YZ a 
tance from t h e  t i p  of crack on t h e  plane y=O f o r  various k values. 
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The r e su l t an t  shear stress a t  t h e  t i p  of t h e  crack i s  

(111.2-21) 

J u s t  as i n  t h e  case of a homogeneous medium, t h e  r e su l t an t  stress a t  t h e  

t i p  of t h e  crack against  a bi-mater ia l  i n t e r f ace  i s  independent of 8. 

If t h e  second phase i s  harder than t h e  f i rs t  phase, 0 < k < 1, 
1 1 
2 2 w e  have 0 < a < -. When -1 < k < 0, then - < a < 1. Consequently, 

t h e  stress concentration a t  t h e  t i p  of a crack i n  t h e  harder phase i s  

higher than t h a t  i n  t h e  s o f t e r  phase. This f inding i s  consis tent  w i t h  

t h a t  of Zak and W i l l i a m s  and Barnett [40,20le 

3. Modes I and 11 Cracks 

a. Dislocation Distr ibut ion Function 

Consider t h e  same th i ck  bi-mater ia l  p l a t e  as discussed i n  t h e  

last section. A crack of u n i t  length i s  s i tua t ed  perpendicular t o  t h e  

in t e r f ace  i n  phase 1. Tensile stress (5 = -0 i s  appl ied uniformly 

over t h e  p l a t e  surfaces  t o  open t h e  crack (Fig. 111-5). The e f f ec t ive  

stres’s (5 on t h e  crack plane can be found by t h e  method i l l u s t r a t e d  

i n  Chapter I1 and i s  denoted as 

YY a 

YY 
-0;. 

Again, t h e  displacement f ield of t h e  crack i s  represented by 

The y-component of t he  normal stress t h a t  of an a r r ay  of dis locat ions.  

a t  (x,O) due t o  a s ingle  edge d is loca t ion  a t  ( t , O )  i n  phase 1 i s  

E352 361: 
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PHASE 2 PHASE I 

Fig. 111-5. A NODE I OR I1 CRACK PERPENDICULAR TO A 
BI-MATERIAL INTERFACE. 



(111.3-1) 

where 

9 
G2 1 - r  7 2  - T l  

1 + 72 + I' G1 
, r = -  A =  9 B =  

and 

7 1 =  3 - 4v, , 

T 2  = 3 - 4v2 

- 
The Burgers vector b i s  p a r a l l e l  t o  t h e  in te r face  f o r  mode I cracks and 

perpendicular f o r  mode I1 cracks. 

L e t  f ( t )  be t h e  unknown d i s t r ibu t ion  function of dis locat ions 

of s t rength b. The force equilibrium f o r  a s ingle  dis locat ion leads t o  

t h e  following s ingular  i n t e g r a l  equation: 

(A+B) and p = 2A. f ( t )  i s  unbounded a t  1 
2 

=lb 
where Y = ( l t . r l , )  , a = -  

I 

both ends of t he  crack. 

By defining 

@(t) = - i y f ( t )  
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a + Bt(x-t), and k (x , t )  = - x+t 

separated i n t o  s ingular  and non-singular p a r t s  as follows: 

t h e  left-hand side of Eq. (111.3-2) can be 3 (x+t 1 

Singular i n t e g r a l  equation of t h i s  type can be inverted according t o  t h e  

method out l ined i n  Appendix A and @(t) i s  solved l'formly.ll The r e su l t -  

ing equation i s  a Fredholm i n t e g r a l  equation of t h e  second kind: 

1 
Q(x)  = K(x, t ' )  Q(t ' )  d t '  + F(x) 

where 

1 K(x, t ' )  = 

) 2 t '  + 1 

2- 
+ i3t ' (t ' 2 (-I + ( t ' + x )  

(111.3-4) 

+ p t '  ( t ' -x)  3 (. + t '  - ~ ) ]  
( t '+x)  



and 

C 1 - 2x F(x) = + G) 2 d 7 i z )  

The constant c i s  t o  be determined by t h e  condition of conservation of 

Brugers vectors: 

4' f ( t )  d t  = 0 

The physical  bas i s  of i t s  der ivat ion is  shown i n  t h e  last  section. 

Equations (111.3-4) and (111.3-5) have t o  be solved simul- 

taneously. F i r s t  def ine 

and 

a,(x) = a, (x) + CQ2(X)  1 ( III 3-6 ) 

Since Eq. (111.3-4) i s  l inear ,  it can be considered as t h e  l i n e a r  combina- 

t i o n  of t h e  following two equations: 

B 1 (x) = k1 K(x,t ') B l ( t ' )  d t '  + F1(x) (111.3-7) 
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and 

QJX) = K(x , t f )  Q2(tf) d t f  f F2(x) e (III, 3-8) 

Q1(x) and Q (x)  are then solved separately. Because of t he  complicated 2 

* form of t h e  kernel  i n  Eq, (111.3-4), a numerical solut ion of t h e  FredhoLm 

i n t e g r a l  equation i s  attempted. Using t h e  method outlined i n  Appendix C, 

Eq. (111.3-7) i s  replaced by a system of n l i n e a r  equations. n i s  t h e  

number of subdivisions i n  the  i n t e r v a l  of integration. 

system of l i n e a r  equations, an approximate expression f o r  

whole i n t e r v a l  can be obtained. Same procedures can be car r ied  out t o  

solve ( ~ ~ ( x ) .  

By solving t h i s  

@,(x) i n  t h e  

With t h e  known values of Q,(x) and @,(x), Eq. (111.3-6) 

can then be subs t i tu ted  i n t o  Eq. (111.3-5) and solved f o r  t h e  constant 

Consequently, @(x), hence f ( x ) ,  i s  obtained from Eq. (111.3-6). 

c. 

If p=O, a = -k, y = G b/2 and CT' = ua(l-k) i n  Eq. 1 a 

(111.3-4), t h e  solut ion reduces t o  t h a t  of a mode I11 crack. A compari- 

son of t h e  exact solut ion obtained from Eq, ( I I Io2-12)  and t h e  numerical 

solut ion of t h i s  case i s  shown i n  Fig. 111-6.. 

exact solut ion and t h e  crosses are obtained from t h e  numerical solution. 

It can be seen t h a t  t h e  agreement i s  excellent.  A s  a consequence of t h i s  

comparison, t h e  numerical approximation t o  t h e  singular i n t eg ra l  equation 

can be employed with confidence, 

The so l id  l i n e  depicts  t h e  

b. Crack Opening Displacement 

The configuration of t h e  crack opening displacement can most 

e a s i l y  be obtained by in tegra t ing  t h e  dis locat ion density. A t  any point 
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(x,O) i n  t h e  region ( 0 < x < l), t h e  crack opening displacement, 6(x),  

i s  defined as: 

6(x) = bJX f ( t )  dt  . (111.3-9) 

Figure 111-7 depic ts  t h e  va r i a t ion  of crack opening displace- 

ments w i t h  the  r a t i o  of shear moduli of the  two const i tuent  phases. 

paring t o  t h e  homogeneous case, it i s  noted t h a t  l a r g e r  e l a s t i c  relaxa- 

t i o n  occurs near t he  in t e r f ace  i f  phase 2 i s  s o f t e r  than phase 1. T h i s  

consequence i s  consis tent  w i t h  physical  expectation. 

Com- 

Figure 111-8 i l l u s t r a t e s  t he  var ia t ion  of crack opening d is -  

placements w i t h  Poisson's r a t i o s  of both phases. The r e s u l t  shaws t h a t  

l a r g e r  e l a s t i c  re laxa t ion  takes  place i n  material w i t h  higher Poisson's 

r a t i o .  

The stress f ie ld  a t  crack t i p  can e a s i l y  be found from the 

d is loca t ion  d i s t r ibu t ion  function: 

(x,y,t)  i s  t h e  stress f ie ld  due t o  a s ingle  edge dis locat ion.  
cij 

where 

By p l o t t i n g  t h e  contour l i n e s  of stress a t  t h e  crack t i p ,  the  type of 

stress s ingu la r i ty  can be obtained. 

crack point  stress s i n g u l a r i t i e s  a t  a bi-material in te r face .  They con- 

Zak and W i l l i a m s  [40] have Shawn the  

cluded that  as phase 1 becomes harder w i t h  respect t o  phase 2, t h a t  is, 
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G1 i s  higher than G t he  s t rength of s ingu la r i ty  increases. In  fact ,  

t h i s  conclusion can e a s i l y  be obtained by examining the crack opening con- 

f igura t ion  i n  Fig. 111-7.. It i s  noted t h a t  the  l a rge r  Gl/G2 

higher i s  t h e  d is loca t ion  densi ty  near t he  in te r face .  

l ead  t o  high stress s ingu la r i ty  a t  t h e  crack t i p .  

29 

is9 the  

Th i s  w i l l  c e r t a in ly  



cHAJ?TER I V  

ELASTIC CRACKS CROSSING A BI-MATERLAL INTERFACE 

1. Introduction 

The general  problems of nonhomogeneous media with cracks and s l i p  

bands have not yet  been attacked. 

t r e a t e d  can be grouped i n t o  two categories.  

The spec ia l  cases t h a t  have been 

The f i rs t  ty-pe of problem 

deals  with cracks and dis locat ion pileups which are l imited i n  one con- 

s t i t u e n t  phase of a two-phase system or w i t h i n  one grain i n  a b ic rys ta l .  

These have been discussed i n  t he  last chapter. The second type of prob- 

lem deals  with two-phase media where t h e  in te r faces  contain cracks f.41-441. 

However, t he  problems involving cracks and s l i p  bands crossing a 

b i c r y s t a l  in te r face  or  a grain boundary have not ye t  been discussed i n  an 

ana ly t i ca l  fashion. This i s  primarily due t o  the  f a c t  t h a t  the  associated 

mixed boundary value problems i n  such cases a r e  complicated by the  unknown 

boundary conditions a t  the  interface.  

I n  s p i t e  of t he  d i f f i c u l t i e s  involved i n  the  analysis,  problems of 

these kinds are ce r t a in ly  of grea t  p r a c t i c a l  importance. 

these s o r t s  can be seen i n  transgranular f rac tures  of polycrystaline ma- 

t e r i a l s  containing b r i t t l e  inclusion par t ic les ,  and a l s o  f o r  p l a s t i c  yield- 

ing crossing phase boundaries when the  s l i p  planes of neighboring grains  

a r e  appropriately aligned. 

Examples of 

It i s  the  a i m  of t h i s  chapter t o  inves t iga te  the  problem of cracks 

and s l i p  bands crossing a boundary. 

placed by t h a t  of an appropriate d i s t r ibu t ion  of dislocations.  By ob- 

ta in ing  t h e  crack opening displacements, a condition for the  extension 

The e l a s t i c  f i e l d s  of cracks are re- 
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of cracks under t h e  applied stress can be reached. 

crack t i p  stress field has been studied i n  d e t a i l .  

Furthermore, t h e  

2. Analysis 

Consider a p l a t e  composed of two e l a s t i c  semi- inf ini te  s t r i p s  welded 

together  a t  the  in te r face .  The coordinate system i s  chosen t o  be t h e  same 

as t h a t  depicted i n  Fig. 11-1. The shear modulus i s  Gl f o r  x >  0 and 

i s  G2 f o r  x < 0. L e t  a crack, crossing the  interface,  be s i t ua t ed  on 

t h e  plane y=O with t i p s  a t  (-1,O) and (1,O) (Fig. IV-1) .  The elas- 

t i c  f i e l d  of the crack i s  again represented by t h a t  of continuously d i s -  

t r i b u t e d  dis locat ions.  

Just  as the  case examined i n  Chapter 111, there  are three kinds of 

stresses needed t o  be considered i n  discussing the equilibrium configura- 

t i o n  of d i s loca t ions ,  These are t h e  d is loca t ion  stress, the  e f fec-  

t i v e  stress on d is loca t ions  due t o  an ex terna l ly  applied stress, 

and the f r i c t i o n  stress coo 

ua, 

If t h e  thickness of t h e  p l a t e  i s  much l a rge r  than the  length of t he  

crack, t he  medium can p r a c t i c a l l y  be considered as Hence, 

the  stress f i e l d  of d i s loca t ions  i n  an i n f i n i t e  medium can be employed. 

Consider t h e  right-hand screw dis loca t ions  a t  (t, 0)  w i t h  Burgers vector 

cl f o r  t > 0 and b f o r  t < 0. The non-vanishing stress component 2 

CT a t  (x,y> is: 
YZ 
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(1) t > 0 

( ( l+k) (x- t )  

(x-t12 + y2 

(2 )  t < 0 

G2b2 (1-k) (x-t ) 
2 ( x - q 2  + y 

G2b2 k(x+t)  
2 2  (x-t)* + y2 - xi- (X-k t )  + y 

(x < 0 )  (IV. 2-1) 

(x > 0 

(IV. 2-2) 

where 

G2 - G1 k =  G 2 + G 1 '  

On t h e  middle plane o f  t he  plate ,  

p l i f i e d  as: 

y=O, the  above expressions are s i m -  

(1) t > 0 

Glbl (l+k) 
23f x - t  
-- 



(2) t < 0 

G2b2 1 - k 
2R x - t  
-- 

“yz = \ 
G2b2 1 G2b2 k ----- 

23.c x - t  23.c x + t  ( X  < 0)  ( IV .2 -4 )  

The e f f e c t i v e  stress on t h e  middle plane of t h e  p l a t e  due t o  an 

uniformly applied stress a = -aa i s  al = -aa(l-k) f o r  x > 0 and 

a2 = -aa(l+k) f o r  x < 0 (Chapter 11). Inside t h e  crack, t h e  res i s tance  

stress t o  t h e  motion of d i s loca t ions  vanishes. 

YZ 

L e t  f (t ) be t h e  unknown d i s t r i b u t i o n  function of d i s loca t ions  rep- 

resenting t h e  crack. The regions L1 and L2 are defined as 0 < - x < 1 

and -1< x < 0 respectively. The union of L1 and L2 i s  denoted by 

L. Because of t h e  d i f f e ren t  expressions of a i n  L1 and L2, t h e  

equilibrium of d is loca t ions  should be considered separately f o r  both re- 

- 

YZ 

gions. Under t h e  applied stress a = -aa, the  equilibrium configura- 
YZ 

t i o n  of d i s loca t ions  i s  determined by t h e  following set of dual  s ingular  

i n t e g r a l  equations: 

2b2 
f ( t )  d t  + 1 2.~r 

L2 
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It i s  noted t h a t  only two terms i n  the  above equations 

are understood t o  be Caucy pr inc ipa l  value integrals .  

In  discussing cracks, an addi t iona l  condition i s  

are s ingular  and 

needed i n  order t o  

determine the  solut ion completely. 

of displacement. 

following paragraphs. 

This i s  the  compatibil i ty condition 

Derivation of t h i s  condition i s  t o  be discussed i n  t h e  

The z-component of displacement a t  (x,O) due t o  a s ingle  r igh t -  

hand screw d is loca t ion  a t  ( t , O )  i s  given below: 

(I) t > 0 

wl(x,y,t) = 2 [tan-’ x- t + k tan-’ 5-  (x > 0 )  

w2(x,y,t) = bl g (1-k) t a n  -1 y 
x- t 

(2 )  t < 0 

b 
w3(x,y,t) = g 2 (l+k) t a n  -1 y 

x-t 

(x  < 0) (1v.2-6) 

w4(x,y,t) = b2 5 (tan-’ - k tan-’ &) (x  < 0 )  . x- t 
(IVe2-7) 

Consider t he  closed c i r c u i t  around the  crack (Fig. IV-2). The dis- 

placement components along t h e  path are:  



t y  

GZ 
PHASE 2 

PATH OF INTEGRATION 

X 

GI 
PHASE I 

Fig. IV-2 .  PATH OF INTEGRATION OF D I S P L A C m N T .  
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(1) x > o  

W1(XJ -€, t )  f ( t )  at + w ( X , " E , t )  f ( t)  at  3 

W1(X'+€, t )  f ( t )  at  + w ( X , t € , t )  f ( t )  at 3 
2 

(2) x < 0 

W2(X,+€)  = W 2 ( X , * , t )  f ( t )  at + W 4 ( X , + € , t )  f ( t )  a t  . 

Assuming t h a t  no dis locat ion enter ing nor leaving the  crack, t he  integra-  

t i o n  of displacement about t he  closed path should vanish: 

0 1 -1 
W,(X,-E) ax  + w4(x,+f) ax + w*(x,+€) ax 

= o .  

I n  t he  l imit ing case where 

condition 

E 4 0 ,  t he  above equation leads t o  t h e  

b f ( t )  d t  + b 2 f ( t )  d t  = 0 . 
1 

( I V e 2 - 8 )  
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Again t h i s  condition can most e a s i l y  be derived from t h e  crack opening 

displacement consideration. 

Equations ( I V , 2 - 5 )  ‘and ( I V . 2 - 8 )  are necessary t o  determine the  solu- 

t i o n  completely. A method of solving t h e  dual singular  i n t e g r a l  equations 

i s  first discussed. It i s  then shown how the  solut ion of i n t e g r a l  equa- 

t i o n s  can be incorporated with the  compatibil i ty condition. 

F i r s t ,  a new Fmction i s  defined as: 

I 

and f ( t )  can be found i f  @(t) i s  known. By employing the  function 

@(t), the  coupled i n t e g r a l  equations can be rewri t ten as: 

( I V .  2-10) 

where 

K ( x , t )  = 

-k 
x+t 
- 

k 
x-t 
- 

-k 
x-t 
k - 

1 x+t 

( I V .  2-11) 



In Eq. ( I V .  2-10), t he  s ingular  and non-singular p a r t s  of in t eg ra l s  

have been separated. The kernel  expression K(x,t) i s  non-singular as 

can be seen from Eq. (IV.2-11). Further defining: 

g(x)  = - 1 i $ ( t ' )  K(x , t ' )  d t '  + 

Equation (IV. 2-10) becomes 

(x E L) * (IV. 2-13) 

The physics of t h e  problem requires t h a t  f ( x ) ,  hence $(x), i s  un- 

bounded a t  the  end points  of L. If g(x)  i s  considered temporarily t o  

be known, then Eq. (IV.2-13) can be formally inverted according t o  the  

procedure outlined i n  Appendix A. 

i n t e g r a l  equation of t he  second kind: 

The resu l t ing  equation i s  a Fredholm 

(IV. 2-14) 

where q(t) = I, R 2 ( t )  = (t-l)(t+l), and c i s  a constant t o  be 

determined otherwise. 
I 

By carrying out the  in tegra t ion  i n  Eq. (IV.2-14) and defining 
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N X )  = z (IV. 2-15) 

t h e  above i n t e g r a l  equation becomes 

@(x) = -$ k K ( x , t )  @(t) d t  + F1(x) + cF2(x) (IV, 2-16) 
3r 

where 

+ (1-t 2 ) ( l -x  2 ) n-2 + (1-x2)n-l]/ 

K2(x,t) = 

n=l  

+ (1-t 2 )(l-x 2 ) n-2 + (Lx2)n-1]/ 
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and 

(IV. 2-18) 

The constant c have d i f f e ren t  expressions i n  

c and c i n  regions L1 and L2 respectively. 1 2 

t i n u i t y  condition imposed a t  t h e  in te r face ,  however, 

terms of constants 

By employing t h e  con- 

it can be shown t h a t  

these two expressions are i n  f a c t  t he  same. It has been assumed t h a t  a t  

t h e  welded in t e r f ace  t h e  z-component of displacement i s  continuous. This 

implies t h a t  f o r  t h e  d is loca t ion  d i s t r ibu t ion  function w e  have: 

blf(O+) = b2f(O-) , 

namely, 

@(O+) - @(o-) = 0 . 

( I V .  2-19) 

( I V .  2-20) 

Subs t i tu t ing  t h e  values of @(O+)  and @(Om) from Eq. (1v.2-16) i n t o  

the above relat ionship,  w e  obtain 

2c1 2c2 
c = - = -  (-1 < x < 1) ( I V .  2-21) 

a2 

When k approaches zero, t h e  medium becoming homogeneous, t h e  

expression of (1v.2-16) check with t h e  solut ion of cracks i n  homogeneous 

materials 
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Equations (1v.2-8), (1v.2-16) and (IV.2-21) are su f f i c i en t  f o r  t he  

determination of f ( x )  and t h e  constant c. By using t h e  constant value 

of c from Eq. (1v.2-16), t h e  Fredholm i n t e g r a l  equation of (IV.2-8) can 

be wr i t t en  f o r  t h e  whole region L as: 

@(x) = l K ( x , t )  @(t) d t  + F1(x) f cF2(x) (x E L )  . 
d 

(IV. 2-21) 

To incorporate t h i s  equation with t h e  compatibil i ty condition, Q(x)  i s  

considered t o  be a l i n e a r  combination of two functions: 

@(x)  = Q,,(x) + CQ,,(X) 

where 

G1(x) = -$ l K ( x , t )  Q1(t) d t  + F1(x) 
3t 

and 

@,(x) = -$ l K ( x , t )  Q2(t) d t  + F2(x) . 
rl 

(IV. 2-22) 

(IV. 2-23) 

(IV. 2-24) 

Q,,(x) and Q, (x)  have t o  be solved separately.  Subst i tut ing the  known 

values of (P1(x) and 02(x) i n t o  Eq. (1v.2-8), t h e  constant c can be 

obtained and Eq. (IV. 2-22) gives the  complete solution. 

2 

A method of solving Eqs, (IV.2-23) and (IV.2-24) i s  now outlined as 

fo l lming .  A s  noted i n  Eq. (IV.2-17), t he  kernel  of the Fredholm i n t e g r a l  
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equation i s  degenerate. 

t h e  kernel  can be t runcated and t h e  i n t e g r a l  equation with degenerate 

kernel  can be solved ana ly t ica l ly .  However, because of t he  d i f f e ren t  

expressions of t h e  kernel  i n  Ll and L2, t h i s  process can be very 

tedious. 

ployed. 

i s  f i rs t  approximated by a quadrature formula. 

I n  pr inciple ,  t h e  i n f i n i t e  series expression of 

Instead, a d i r e c t  procedure as out l ined i n  Appendix C i s  em-  

The d e f i n i t e  i n t e g r a l  on t h e  right-hand s ide  of Eq. (IV.2-16) 

Then the  i n t e g r a l  equa- 

t i o n  i s  transformed i n t o  a system of l i n e a r  a lgebraic  equations. 

number of equations i s  equal t o  the  number of subdivisions, n, i n  L. The 

system of l i n e a r  equations can then be solved numerically. 

The 

I n  t h e  process of approximating the  i n t e g r a l  portions i n  Eqs. (1V.- 

2-23) and (IV.2-24) by quadrature formulas, t h e  Simpson's ru l e  has been 

used. This approximation i s  p r e t t y  accurate and dependable. It i s  due 

t o  the  f a c t  t h a t  t h e  integrands i n  t h e  above equations are well behaved 

polynomials, 

I n  the  present analysis,  numerical solut ion of t he  Fredholm in t e -  

g r a l  equations have been car r ied  out for 

under uniform s t r a i n  E can be obtained simply by defining Q = G l ~ a  

and u2 = G 2 ~ a  i n  t h e  formulation. 

n=102. Solution f o r  t he  p l a t e  

a 1 

Figure I V - 3  shows the  dis locat ion d i s t r ibd t ion  function f o r  cracks 

under both uniform s t r a i n  and stress. It is  obvious from Fig. I V - 3  t h a t  

t h e  d i s t r ibu t ion  function i s  discontinuous a t  t h e  in t e r f ace  i f  the  l a t t i c e  

parameters of t he  two media are d i f fe ren t .  

Before leaving t h i s  section, it i s  worthwhile t o  examine the  be- 

havior of t h e  d i s t r ibu t ion  function a t  both ends of t h e  crack. From 
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Fig. IV-3. DISTRIWPTION FUNCTIONS OF DISLOCATIONS 
REPRESENTING CIL4CKS CROSSING A PHASE BOUNDARY. 
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Eq. (IV.2-17) w e  not ice  t h a t  t h e  function @(x), hence f (x) ,  varies 

with t h e  inverse square root  of t h e  dis tances  from t h e  crack t i p s  as 

approaches +I. This can 'a l so  be shown read i ly  by p lo t t i ng  @(x) as 

funct ions of t h e  distances from t h e  crack t i p s  (Fig. IV-4). 

x 

- 

A s  a consequence, w e  can write 

-% @(r) = A r  

f o r  t h e  crack t i p  (1,O) and ' 

-x @(r) = B r  

( IV.  2-25) 

(IV. 2-26) 

f o r  t h e  crack t i p  (-l,O)* I n  t h e  above equations, r denotes the  distances 

from t h e  crack t i p s .  The constants A and B can immediately be obtained 

from Fig. IV-4 .  

Moreover, i n  applying Eq. (IV.2-8) t o  t he  functions Q,(x) and 

Q2 (x), numerical in tegra t ions  have been performed. To circumvent t h e  

s i n g u l a r i t i e s  of t h e  functions a t  x = - +1, t h e  ranges of L1 and L2 

used are The contribu- 

t i o n s  of t h e  port ions of Q1(x) and Q (x) neglected are nuw inves t i -  

gated. A t  t h e  crack t i p s  t h e  function Q1(r) behaves as i n  Eqs. (IV.2-25) 

and (Iv.2-26). Constants A and B a re  obtained from p l o t s  of an cD1(r) 

vs.  Rn r a t  both crack t i p s .  Similar expressions are va l id  for Q2(r). 

By carrying out t h e  in tegra t ion  of Eq. (1v.2-8) f o r  -1 < x <-0.999 - and 

0.999 < - x < 1, 

0 < x < 0.999 and -0.999 < - -  x < O  respectively. - -  
2 

it i s  found t h a t  t h e  e r r o r  involved i s  negligibly small. 
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3. Crack Opening Displacement 

The crack opening displacement 6(x) can readi ly  be obtained by 

in t eg ra t ing  t h e  d is loca t ion  d i s t r ibu t ion  function: 

X 
6(x) = @(t) d t  . (IV. 3-1) 

Although t h e  d is loca t ion  dens i ty  can be discontinuous a t  

crack opening displacement i s  a continuous function i n  the  e n t i r e  region 

of L. 

x = 0, t h e  

Numerical r e s u l t s  of crack opening displacements are shown i n  

Fig. IV-5. 

symmetry of curves, f o r  k = .4 and k = -.4. The broken l i n e  i n  t h e  

middle shows t h e  crack opening displacement i n  a homogeneous medium. By 

comparing these  curves, it i s  noted t h a t  l a rge r  e l a s t i c  re laxat ion takes  

place i n  t h e  comparatively s o f t e r  phase. 

so lu t ion  f o r  a homogeneous medium i s  small. 

The v a l i d i t y  of the so lu t ions  can be readily checked by t h e  

However, t he  deviation from t h e  

Again, by employing t h e  argument similar t o  t h a t  i n  the  last section, 

t h e  e r r o r  involved i n  t h e  numerical in tegra t ion  of Eq. ( I V . 3 - l )  can be 

estimated. 

The behavior of t h e  crack opening displacements 6 ( x ) ,  near crack 

t i p s  can e a s i l y  be determined. From t h e  last sec t ion  w e  have learned 

t h a t  @(t) near crack t i p s  var ies  with t h e  inverse square root  of t h e  

distances from t h e  t i p s .  Since crack opening displacements are derived 

from t h e  in tegra t ion  of @(t), it i s  leg i t imate  t o  conclude t h a t  c lose  

t o  t h e  crack t i p ,  6(x) va r i e s  with t h e  square root  of t h e  dis tances  

from crack t i p s .  
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4. Stress  Fields a t  the  Crack Tips 

It i s  known t h a t  f o r  cracks imbeded i n  homogeneous media, displace- 

ments a t  t h e  crack t i p s  have t h e  general  expression [h]: 

K~ 2 r ‘  e w = - G [y] s i n  - 2 (IV. 3-2) 

where r i s  t h e  distance f romthe  crack t i p  and 8 i s  the  angle made 

i s  the  stress in t ens i ty  KIII with t h e  x-axis about t h e  crack t i p .  

factor .  A t  t h e  crack surface, 8 = a, 

Km 2 r ’  w =  - [ ~ ]  G (IV. 3-3) 

It i s  noted from t h e  above equation t h a t  i n  a homogeneous medium 

the  crack opening displacement varies w i t h  t h e  square root of the  distance 

from the  crack t i p .  This i n  tu rn  implies t h a t  f o r  crack crossing a bi-  

material in te r face  the  stress s ingular i ty  a t  t he  immediate v i c i n i t y  of t he  

crack t i p  behaves as i f  the  crack were imbeded i n  a homogeneous medium. 

Hence, t he  stress expression a t  t h e  t i p  of a crack i n  a homogeneous 

medium can be employed f o r  our problem: 

6 s i n  - 2 
-Km 

( r =  

xz (2rtr)’ 



where 8 i s  measured from t h e  x-axis. The stress in t ens i ty  factor ,  

has d i f f e ren t  values a t  t h e  two crack t i p s ,  and these values can ’ 
be determined by Eq. (IV..3-3) combined with t h e  data  of Fig. IV-4 .  

Although t h e  types of stress s ingu la r i t i e s  are t h e  same a t  both 

crack t i p s ,  t he  s t rength of these s ingu la r i t i e s  can be different .  It i s  

found t h a t  when t h e  magnitude of t h e  stress in t ens i ty  factor ,  k = -.4, 

a t  the  crack t i p  (1,O) i s  about twice of t h a t  a t  t h e  t i p  (-1,O). 

This leads us t o  t h e  following conclusion: 

phase boundary, t h e  stress concentration near t h e  crack t i p  i n  the  com- 

para t ive ly  harder phase i s  higher than t h a t  i n  t he  so f t e r  phase. 

f o r  a crack lying across a 

5. Discussion 

The solut ion of t h e  present problem can a l s o  be achieved by employ- 

ing the  method of l i n e a r  e l a s t i c i t y  theory. 

be set up f o r  both regions, f o r  x > 0 and x < 0 (Fig. I V - 6 ) .  It i s  

required t h a t  uzx and the  z-component of displacement, W, be contin- 

uous a t  t h e  interface.  

Boundary value problems can 

The problem i s  complicated by the  fact t h a t  both nZx and W are 

unknown on t h e  boundary x = 0. Moreover, t h e  boundary conditions on 

y=O are mixed. It i s  suggested t h a t  both nzx and W can be assumed 

i n  t h e  form of Fourier series. By taking a s ine  transform on the  var i -  

able  

PO, 

two sets of dual  i n t e g r a l  equations should be solved separately f o r  

while t h e  cont inui ty  of CJ 

x 

one obtains a set of dual i n t e g r a l  equations i n  each region. 

of t h e  Laplace equation and applying the  boundary conditions on 

These 

W 

a t  t h e  in te r face  i s  also sa t i s f i ed .  
zx 
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The d i f f i c u l t y  i n  solving t h i s  problem by e l a s t i c i t y  theory i s  due 

However, t h i s  d i f f i c u l t y  i s  t o  t h e  unknown boundary conditions a t  

circumvented i n  t h e  present analysis ,  

dis locat ions i n  a two phase medium, t h e  continuity conditions a t  the i n -  

terface have already been b u i l t  i n  t h e  stress expressions. Furthermore, 

s ince dis locat ion d is t r ibu t ions  i n  both phases are t r ea t ed  as one un- 

known function only one set of dual  i n t e g r a l  equations has t o  be consi- 

x=O. 

Using t h e  stress f i e l d  of screw 

dered. 

The dis locat ions representing t h e  crack can a l s o  be viewed as dis-  

locat ions on a s l i p  band crossing a grain boundary. 

f i e d  simply by specifying an appropriate res is tance stress t o  the  motion 

of dis locat ions on t h e  s l i p  band. Hence, t he  mathematical procedure em- 

ployed i n  the  present analysis  i s  equivalent t o  t h a t  of solving a dis lo-  

cat ion pileup problem. 

i s  t h e  term of external ly  applied stresses. 

This can be j u s t i -  

The only term needed t o  be changed i n  Eq. (IV.2-5) 

Finally, a c ruc ia l  point i n  the  der ivat ion of Eqs. (1x2-8) and 

It i s  noted t h a t  i n  deriving both (IV.2-20) needs t o  be pointed out. 

equations, t he  e f fec t ive  stress expressions of both phases have been 

employed. The implication i s  two-f old. 

F i r s t ,  i f  t h e  stress on t h e  middle plane of t h e  plate ,  due t o  some 

i n t e r n a l  sources, i s  other than or f o r  x > 0 and o2 f o r  x < 0, 

Eq. (1x2-8) w i l l  not hold. This implies t h a t  dis locat ions have t o  en ter  

or  leave t h e  crack i n  order t o  reach equilibrium. Secondary, any dis- 

cont inui ty  of displacement a t  t h e  in te r face  should be taken i n t o  account 

i n  t h e  formulation of t h e  problem. 

b2f(0-) 

This can be done by se t t i ng  blf(O+) - 
equal t o  t h e  magnitude of t h i s  discontinuity.  
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CHAPTER v 

AN ELASTIC-PLASTIC CRACK I N  A TWO-PHASE SYSTEM 

1. Introduction 

The matrix phase i n  a composite material serves several  important 

functions [l]. 

surfaces from flaws and t r ans fe r s  both l o c a l  and nominal stresses t o  the 

hard phase. The matrix should be inherent ly  notch-tough, so t h a t  cracks 

It binds t h e  hard p a r t i c l e s  together  t o  pro tec t  t h e i r  

i n i t i a t e d  a t  the  b r i t t l e  phase w i l l  be blunted when they reach t h e  s o f t  

matrix. 

Blunting of crack t i p s  can be caused by e i ther  the  s p l i t t i n g  of 

i n t e r f ace  or t he  p l a s t i c  re laxat ion i n  the  matrix. Typical observations 

i n  these respects  can be found i n  the  work of Cooper and Kelley [@I. 

They have studied haw a mater ia l  reinforced with aligned fibers f a i l s  a t  

t h e  root  of a notch by the  propagation of t ransverse cracks. The com- 

pos i te  examined cons is t s  of br i t t le  tungsten w i r e s  i n  vacuum-cast copper 

with very strong i n t e r f a c i a l  bonding. T h i s  system cons t i tu tes  an extreme 

combination of b r i t t l e  and d u c t i l e  phases. A representat ive series of 

micrographs are shown i n  Fig. V-1. 

It i s  noted t h a t  t h e  duc t i l e  matrix phase has been p l a s t i c a l l y  

deformed a t  t h e  crack t i p .  

t i p s  w i l l  cause subsequent f a i l u r e  of t h e  matrix phase. 

of these experimental observations, w e  are led t o  bel ieve t h a t  a realis- 

The p l a s t i c  s t r a i n  concentrated a t  t h e  crack 

A s  a consequence 

t i c  discussion of problems concerning crack propagation i n  most metal- 

matrix composites should consider both the  e l a s t i c  and p l a s t i c  behavior 

of const i tuent  phases. 



Fig. V-1. PROGRESSIVE SLOW ADVANCE OF THE CRACK. The 
three  micrographs on the  l e f t  w e r e  taken i n  the  order 
top, middle, bottom showing growth of the  crack. x20. [4?l 
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I n  t h i s  chapter an idea l ized  model of a mode I11 e l a s t i c - p l a s t i c  

crack i n  a two-phase medium has been set up. Relation between t h e  ap- 

p l i e d  stress and t h e  length of p l a s t i c  zone has been found f o r  various 

r a t i o s  of r i g i d i t i e s .  

ment c r i t e r i a  f o r  f rac ture ,  t h e  f r ac tu re  load can be determined. 

By employing t h e  c r i t i c a l  crack opening displace- 

2. Analysis 

Consider a p l a t e  composed of two e l a s t i c  semi- inf ini te  s t r i p s  

welded together a t  t h e  in te r face .  The shear modulus i s  G1 f o r  x > 0 

and i s  G2 f o r  x < 0. L e t  a crack i n  phase 1 be situated on t h e  plane 

y=O and perpendicular t o  t h e  in te r face .  To simulate t h e  crack i n  laminar 

s t ruc tures ,  t h e  crack length i s  considered t o  be f ixed  and equal t o  unity. 

If phase 2 i s  much s o f t e r  than phase I, it i s  a val id  assumption t h a t  t h e  

length of p l a s t i c  zone ahead of t h e  crack i n  t h e  hard phase i s  much smaller 

than t h a t  i n  t h e  s o f t  phase and hence can be neglected. 

p l a s t i c  zone i n  phase 2 i s  set equal t o  b which varies with t h e  applied 

stress (Fig. V-2) .  

The length of 

It has been pointed out i n  Chapter I t h a t  t h e  asso- 

c i a t ed  displacements of both cracks and s l i p s  band are s imi la r  t o  those 

of dis locat ions.  Consequently, l i n e a r  e l a s t i c i t y  can again be employed 

i n  t h e  present ana lys i s  by representing t h e  non-linear region as a packet 

of continuous dis locat ions.  

There are t h r e e  kinds of stresses needed t o  be considered i n  dis- 

cussing the  equilibrium configuration of dis locat ions.  

d i s loca t ion  stress , 
externa l ly  applied stress, aa, and t h e  f r i c t i o n  stress a0. 

These are t h e  

ad, t h e  e f f ec t ive  stress on dis locat ions due t o  an 



x 

PHASE 2 PHASE I 

Fig. V-2. AN ELASTIC-PLASTIC CRACK. 

99 



If t h e  thickness of t h e  p l a t e  i s  much la rger  than the  length of t h e  

crack, t h e  medium can p rac t i ca l ly  be considered as " inf ini te ."  Hence, t he  

stress f i e l d  of dis locat ions i n  an i n f i n i t e  medium can be employed. 

s i d e r  right-hand screw dis locat ions a t  ( t , O )  with Burgers vector bl f o r  

t > 0 and c2 f o r  t < 0, The non-vanishing stress component cr a t  

( x , ~ )  is: 

Con- 
- 

YZ 

(1) t > 0 

(2 )  t < 0 

(v. 2-1) 

(v. 2-2) 

The e f fec t ive  stress on t h e  middle plane of t he  p l a t e  due t o  an 

uniformly applied stress cr = -era i s  crl = -cra(l-k), f o r  x > 0 and 

cr2 = -cra(l+k), f o r  x < 0 (Chapter 11). The resis tenee stress t o  t h e  

motion of dislocations,  

equal t o  the  y i e ld  stress of t h e  material i n  t h e  second phase. 

dium i s  a l s o  assumed t o  behave perfect ly-plast ic .  

YZ 

co, vanishes inside the  crack region and i s  set 

The me-  
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The pas t i c  re laxat ion a t  t h e  crack t i p  i s  assumed t o  be caused 

t o t a l l y  by t h e  in jec t ion  of dis locat ions from the  crack t i p  i n t o  t h e  s l i p  

l ines .  Relaxation due t q  absorption of opposite sign dis locat ions t o  t h e  

crack t i p  i s  not considered i n  the  present analysis.  

L e t  f (t ) be t h e  unknown d i s t r ibu t ion  function of dis locat ions 

representing t h e  crack. The regions L1 and L2 are defined as 

0 < x < 1 and -b < x < 0 respectively. The union of Ll and L2 i s  - +. - 
denoted by L. Because of t h e  d i f f e ren t  expressions of u i n  L1 and 

YZ 

L2, 

both regions. Under the  applied stress (r = -aa, t h e  equilibrium con- 

f igura t ion  of dis locat ions i s  determined by the  following set of dual 

s ingular  i n t eg ra l  equations: 

t h e  equilibrium of dis locat ions should be considered separately for 

YZ 

J L1 

J L1 

G1bl- - [ 
231 

Glbl - [ 
23l 

1 
x - t  

l + k  
x - t  

+ 

If +J %[ 2- x - t  + A ] f ( t  x + t  
L2 

) at = 

It i s  noted t h a t  only two terms i n  t h e  above equations a r e  singular and 

a r e  understood t o  be Cauchy pr inc ipa l  value in tegra ls .  

Since it has been assumed tha t  p l a s t i c  relaxation i s  not due t o  the  

absorbtion of dislocations,  there  i s  no dis locat ion leaving nor entering 

the  region L. A s  a consequence, t h e  compatibil i ty condition, Eq. (IV.2-81, 

derived i n  t h e  last  chapter i s  s t i l l  va l id  i n  t h i s  case: 
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b 2 f ( t )  d t  = 0 . 
b l f ( t )  d t  + f f L1 L2 

(V. 2-4) 

Equations (V.2-3) and (V.2-4) are s u f f i c i e n t  t o  determine t h e  solu- 

t i o n  completely. 

i s  first discussed. It i s  then shown how t h e  so lu t ion  of i n t e g r a l  equa- 

t i o n s  has t o  be incorporated with t h e  compatibil i ty condition i n  order t o  

f i n d  the  magnitude of t h e  applied stress under which t h e  p l a s t i c  zones i s  

A method of solving t h e  dual s ingular  i n t e g r a l  equations 

extended t o  a length b. 

F i r s t ,  a new function i s  defined as: 

(v. 2-5 

and f(t) can be found i f  @(t) i s  known. By employ,-ig t h e  func ion 

@(t), 

be rewrit ten as: 

t h e  left-hand side of t h e  coupled s ingular  i n t e g r a l  equations can 

where 

(v. 2-6) 
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and 

G2 - G1 k =  G +G1 ' 
2 

I n  Eq. (v.2-6), t h e  s ingular  and non-singular p a r t s  of i n t eg ra l s  

have been separated. The kernel expression K ( x , t )  i s  non-singular as 

can be seen from Eq. (V.2-7). Further defining: 

(V. 2-8) 

Eq. (v.2-8) becomes: 

a.Lm = g(x) (x € L )  . $4 t - x  (v. 2-91 



The physics of t h e  problem requires  t h a t  f ( t ) ,  hence p l ( t ) ,  be bounded 

a t  (-a,O) and unbounded a t  (1,O). If g(x)  i s  considered temporarily 

t o  be known, then Eq. (V.2-9) can be formally inverted according t o  t h e  

procedure outlined i n  Appendix A. The r e su l t i ng  equation is a Fredholm 

i n t e g r a l  equation of t h e  second kind: 

(v. 2-10) 

where R l ( t )  = t + b and R 2 ( t )  = t - 1. 

The kernel of Eq. (V.2-10) i s  very complicated s ince it involves 

p r inc ipa l  value in t eg ra l s .  The in tegra t ion  has been car r ied  out for d i f -  

f e ren t  ranges of p l a s t i c  zone length, b. The resu l t ing  form of i n t e g r a l  

equations a r e  summarized i n  t h e  following: 



where 

(0 < t < b) - -  
(b < - t < 1) 

(v. 2-11) 

(v. 2-12) 

K 2 ( x , t )  = x+t [E (: - s i n  t ( l + b )  



+ 
j X - t  b+x b+x [ R n ( b + l ) ( g  -p)+F Rn e&+ dziT8l2 

1x1 

- [ J n ( b + l ) ( J g  - F ) + / = j n  C G + k . r i Z i 3 l 2  
1x1 x+t ' b+x b+x 

and 

CJ a 

'a 
c = - .  
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where 

and 

(V. 2-14) 

(V. 2-15) 

(v. 2-16) 
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(3)  b > l  

where 

2i 
d a 

- -  - @(XI 

= %/, K(x,t)  @(t) d t  + F5 + c3F6(x) 
3T 

(-1 <, t 5 0) 

(-b < - t 5 -1) 

(V. 2-17) 

(v. 2-18) 
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x+t t (b+ l )  

-p( Rn(b+l) - Rn CG+.Jb(l-;;Sl' - 
1x1 b+x 

and 

0 
0 c = - .  

3 0  a 
(V. 2-19) 



I n  each of t h e  above i n t e g r a l  equations (V.2-11) ,  ( V . 2 - 1 4 )  and 

(V.2-17) ,  t h e r e  are two parameters which have t o  be determined. 

are t h e  p l a s t i c  zone length  and t h e  r a t i o  uo/ua. 

i n t e g r a l  equations, t h e r e  i s  an add i t iona l  mathematical condition a v a i l -  

able, namely, t h e  compat ib i l i ty  Eq. (V.2-4) .  

s ion  t h a t  t h e  p l a s t i c  zone length, b, 

stress, 

t h e  problem, i n  f a c t ,  t h i s  i s  valid.  It i s  understood t h a t  t h e  p l a s t i c  

r e l axa t ion  a t  t h e  t i p  of t h e  crack i s  caused by t h e  i n j e c t i o n  of d is loca-  

t i o n s  i n t o  t h e  s l i p  l i n e s .  Hence, each incremental growth of t h e  p l a s t i c  

zone requi res  t h e  i n j e c t i o n  of more d i s loca t ions  which push t h e  ex i s t ing  

d i s loca t ions  f u r t h e r  across  t h e  load bearing section. Meanwhile, t h e  

appl ied  stress has t o  be increased correspondingly. 

These 

However, besides t h e  

Th i s  l eads  t o  t h e  conclu- 

and t h e  magnitude of applied 

are not independent of each other. From t h e  physics of ua’ 

A method of solving t h e  i n t e g r a l  equation i s  now i l l u s t r a t e d .  

s i d e r  t h e  case where the p l a s t i c  zone length  i s  less than  unity.  The 

value of b i s  f i r s t  assumed. @(x)  i n  Eq. (V.2-11)  can then be re- 

w r i t t e n  as a l i n e a r  combination of two functions: 

Con- 

where @,(x) and @,(x) s a t i s fy ing  t h e  following i n t e g r a l  equations: 

@,(X) = 1 @,(t) K(x,t) d t  + F1(x) 
Tc2 L 

and 

(v. 2-21) 

(v. 2-22) 

where K ( x , t )  has been defined i n  Eq. (V.2-12). I n  view of t h e  very 

complicated form of t h e  ke rne l  i n  t h e  above i n t e g r a l  equations, only 
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numerical solut ions have been attempted. The de f in i t e  in tegra ls  on the 

right-hand s ide of Eqs. (V.2-21) and (V.2-22) are f i rs t  approximated by 

a quadrature formula. Then the  i n t e g r a l  equations are transformed i n t o  

systems of algebraic equations. The number of equations i n  each system 

i s  equal t o  the  number of subdivisions, n, i n  L. The systems of l i n e a r  

equations can then be solved numerically. 

outl ined i n  Appendix C. 

Details of t h i s  procedure are 

Knowing @,(x) and Q2(x), t h e  constant c can be found by the  1 

Fi r s t ,  Eq. (V.2-4) i s  rewri t ten i n  terms of the following procedure. 

known functions @,(x) and @,(x) as: 

[ J t )  + C,@,( t ) l  at = 0 
+ k1 1 

Then c1 can be solved from t h i s  coapa t ib i l i t y  equation as: 

(V. 2-23) 
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Since O l ( t )  and 0 2 ( t )  are known, t h e  constant c can be obtained 

by carrying out t h e  numerical i n t eg ra t ions  i n  t h e  above equation. 

ing t h e  value of cl, 

i s  given by Eq, (V.2-20). 

1 

Know- 

t h e  complete so lu t ion  of t h e  d i s t r i b u t i o n  function 

The same procedure i s  valid,  f o r  b=l and b > 1. A t y p i c a l  dis-  

l oca t ion  d i s t r i b u t i o n  function of an  e l a s t i c - p l a s t i c  crack i n  a two-phase 

medium i s  shown i n  Fig. V-3. 

For each value of t h e  p l a s t i c  zone length, b, t h e  corresponding 

can be found from t h e  constant c by ex te rna l ly  appl ied  stress, ua, 

carrying out t h e  above mentioned mathematical procedure. For a c e r t a i n  

two-phase system, or a given k value, one can repeat t h i s  procedure f o r  

a s e t  of b values. The corresponding values of appl ied  stress needed t o  

extend the p l a s t i c  zone can then be obtained. Results of t hese  calcula- 

t i o n s  are summarized i n  Fig. V-4 f o r  various r a t i o s  of r i g i d i t i e s  of t he  

two cons t i tuent  phases. 

1 

I n  p l o t t i n g  t h i s  f igure ,  w e  have used t h e  ef- 

f e c t i v e  stress on d is loca t ions ,  i n s t ead  of t h e  ex te rna l ly  applied one. 

This e f f e c t i v e  s t r e s s ,  

r i g i d i t i e s  of t h e  two phases (Chapter 11) and i s  t h e  a c t u a l  stress t h a t  

cr2 = ca(l+k), va r i e s  s t rongly  with t h e  r a t i o  of 

d r ives  d i s loca t ions  i n  t h e  y i e l d  zone. 

The phys ica l  implication of Fig. V-4 i s  now examined. The exten- 

s ion  of p l a s t i c  zone - i s  cont ro l led  by two fac to r s ,  namely, t h e  shear 

modulus and t h e  f r i c t i o n  stress of t h e  second phase. I n  a c e r t a i n  com- 

pos i te ,  or f o r  a given k value, t h e  extension of p l a s t i c  zone can be 

diminished by increas ing  t h e  yield strength,  

On t h e  o ther  hand, fo r  a given e f f e c t i v e  applied stress on d is loca t ions ,  

t he  higher t h e  shear modulus of t h e  second phase is ,  t h e  sho r t e r  the  

crop of t h e  second phase. 

p l a s t i c  zone w i l l  be. 

112 



G, b, f (X 

% 

b=-.4 -.25 

3.0 

X 
.CJ 

.- 1.0 

--3.0 

Fig. V-3. THE DISLOCATION DISTRE3UTION RTNCTION REPREXXNTING 
THE E L A S T I C - P U S T I C  CRACK (k=-.6). 



b 
C 

0.0 0.2 0.4 

Fig. V-4. THE RELATIONSHIP 
AND PLASTIC ZONE LENGTHS. 

0.6 08 I .O 

B-EN APPLIED STRESSES 



Finally,  t h e  accuracy of t h e  determination of applied stress for a 

given value of b needs t o  be examined. A s  can be seen from Fig. V-3, 

t h e  r a t i o  ua(l+k)/co becomes very large when b approaches unity. This 

i n  t u r n  ind ica t e s  t h a t  t h e  constant c - uo/ua(l+k) becomes too  small 

t o  be accura te ly  determined by using Eq, (V.2-4) .  

1 -  

However, s ince  t h e  

r e l a t i o n  between t h e  applied stress and t h e  p l a s t i c  zone length are ex- 

pected t o  vary i n  a continuous manner, it i s  suggested t h a t  curves i n  

Fig. V - 4  for l a rge  values of b can be obtained by extrapolation. 

3. Crack Opening Displacement 

The crack opening displacement 6(x) a t  t h e  crack t i p  i s  obtained 

by i n t e g r a t i n g  t h e  p l a s t i c  displacement i n  t h e  yield zone: 

0 
6 ( 0 )  = J bpf( t )  d t  , 

-b 

Both 6 ( c )  and b have t h e  same u n i t  as t h e  crack length. 

Numerical i n t eg ra t ion  has been c a r r i e d  out for various systems of 

composites and f o r  various s i z e s  of p l a s t i c  zones. 

marized i n  Fig. V-5  where t h e  crack length i s  taken equal t o  uni ty  such 

t h a t  b/c = b. 

zone, t h e  crack opening displacement increases  as t h e  r i g i d i t y  of t h e  

matrix phase decreases. 

The r e s u l t s  are sum- 

This p l o t  i nd ica t e s  t h a t  f o r  a constant length of p l a s t i c  

The p l a s t i c  zone s ize ,  b, 

stress on t h e  p l a s t i c  zone (Fig. V-4). 

p l a s t i c  displacement a t  t h e  crack t i p  accumulates. 

i s  determined by t h e  e f f e c t i v e  app l i e  

A s  t h e  y i e l d  zone extends, t h e  

T h i s  w i l l  f i n a l l y  
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l ead  t o  unstable crack propagation when a cer ta in  c r i t i c a l  crack opening 

displacement, Ec, i s  attained. 

A thorough investigation of the  relat ionship between fracture  load 

and c r i t i c a l  crack opening displacement i s  now discussed. 

and Fig. V-3 w e  have p lo t ted  

respectively. 

between E(c)G2/aa and aa(l+k)/ao i s  obtained as shown i n  Fig. V-6. 

In  t h i s  case the  parameter 

dinate. 

In  Fig. V-4 

b/c v ~ . a ~ ( l + k ) / ~ ~ ~  and b/c vs. 8(c)G2/cra 

By combining Fig. V-4 and Fig. V-5, a l i n e a r  re la t ionship 

appears i n  both the abscessa and t h e  or- 
Oa 

Both the intercept  on the  ordinate and t h e  slope of t h e  l i nes  

increase as the  r a t i o  G2/Gl decreases. By measuring t h e  slopes and 

intercepts ,  l i n e a r  equations can be wri t ten f o r  these l ines .  Then by 

rearranging t h e  parameters of these equations we can get  a set of equa- 

t i o n s  governing the  var ia t ion of a(.) with a /ao: a 

(5)’ 0.375 
l + k  
- 

0.97 - 
l + k  

(k = 0 )  

(k = -0.6) 

These are depicted i n  Fig. V-7. 

pear i n  the  above equations. 

contribution of t h e  second order term i s  small. 

Both l i n e a r  and second order terms ap- 

It i s  noted t h a t  a t  l a w  applied stress t h e  

Now w e  proceed t o  consider several  p rac t i ca l  composite systems, 

The matrix phases where the  p l a s t i c  relaxation takes place are Aluminum 
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a l l o y  7075-T6 and 2024-T3. The elastic moduli and y ie ld  s t rength of 

these materials are given i n  t h e  first four columns of Table V. l .  The 

f rac ture  toughness, Glc, i s  calculated from t h e  values and i s  

shown i n  column 6. Knowing 

ment, 6(c) ,  can be approximated from the  equation [5O]: 

t h e  c r i t i ca l  crack opening displace- Glc' 

Glc = 2 u F ( c )  (v. 3-31 

These are shown i n  t h e  last column of Table V . l .  

forcements dispersed i n  t h e  Aluminum a l l o y  matrices are f ibe r s  o r  w i r e s  

of Boron, Tungsten, Beryllium, S ta in less  S tee l  (18 Cr - 8 N i )  and A 1  0 

The shear moduli of these materials are given i n  t h e  second column of 

Table V.2. The r a t i o  of r i g i d i t i e s  of t he  hard and so f t  phases a re  shown 

i n  column 3. 

2024-T3, have t h e  same r ig id i t i e s .  

quant i t ies  

t h e  two matrix phases using the  values of 6(c)  from Table V . l .  From 

Suppose t h a t  t h e  re in-  

2 3' 

Notice t h a t  t h e  matrix phases, Aluminum a l loys  7075-T6 and 

In  columns 4 and 5 of Table V.2 t h e  

6 ( c )  (G2+Gl)/ 2a0 of each composite system a re  evaluated f o r  

these values of 6 (c )  (G2+G1)/2u0 t h e  corresponding c r i t i c a l  f rac ture  

load can be readi ly  obtained from Fig. V-7 by extrapolation. 

In  Table V.3, t h e  f rac ture  stress of composites are l is ted f o r  

various crack lengths. 

i s  one inch. For these hard phase materials under consideration, t h e  

c r i t i c a l  f rac ture  stresses range from 0.06 t o  0.12 of t h e  y ie ld  strength 

of t h e  7075-T6 Aluminum a l l o y  and from 0.32 t o  0.59 of t he  yield s t rengt  

W e  first consider t he  case where the  crack length 

of t h e  2024-T3 Aluminum al loy.  If t h e  hard phase i s  of t h e  same material 

as t h e  matrix phase, l a rge r  f rac ture  stresses are allowed as  shown i n  t h e  

last  two columns of Table V.3. 
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Table V.2 

Material i 
S t a i n l e s s  

S t e e l  

I 7075-T6 I 2024-T3 

EC (G2 + G1)/2c0 VALUES FOR DIFFERENT 

. COMPOSITE SYSTEMS 

G1 
6 

(10 p s i )  

26.3 e481 

23.52 

20,45 

22.5 

* 
6c and uo f o r  Aluminum alloy 7075-T6 

6 and uo f o r  Aluminum a l l o y  2024-T3 
** 

C 
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The case of a crack of length 0.1 inch i n  the  7073-T6 Aluminum 

a l l o y  matrix i s  a l so  described i n  t h e  second row of Table V.3. These 

values aret as expected, considerably higher than those f o r  t he  crack 

length of one inch. Note t h a t  t he  r a t i o  a,/a i n  the  composite rela- 

t i v e  t o  the  pure 7075-T6 alloy, increases as the  crack length decreases. 
0 

This  indicates  t h a t  t h e  detrimental  e f f ec t  on f rac ture  strength due t o  

the  introduction of second phase i s  less pronounced as the  f l a w  s i z e  

decreases. 

r a t i o  of ca/co i s  higher than uni ty  for a crack of 1/10 inch. Hence, 

If t h e  202bT3 Aluminum a l loy  i s  used as matrix material t h e  

the  r e su l t  i s  not shown here. 

Several important conclusions concerning the  fracture  of composite 

materials have been reached i n  t h i s  and the last sections. These are 

summarized as follows: 

(1) In a cer ta in  composite system, or  f o r  a given k value, t h e  

extension of p l a s t i c  zone can be diminished by increasing the yield 

strength of the  second phase material. 

(2)  For a given ef fec t ive  applied stress on dislocation, the  higher 

t h e  shear modulus of t he  second phase is, the  shorter  t h e  p l a s t i c  zone w i l l  

be. 

(3) For a constant length of p l a s t i c  zone, t h e  crack opening dis- 

placement increases as t h e  r i g i d i t y  of t h e  matrix phase decreases. 

(4) For a cer ta in  composite system, or a constant k value, t h e  

f rac ture  stress a t  l o w  applied loading can be increased by improving the  

toughness of the matrix phase. 

t h i r d  row of Table V.3. 

Thi$ i s  c lear ly  seen i n  t h e  first and 
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( 5 )  The bi-material system under consideration i s  an ideal ized 

s i tuat ion,  

d i  splacement value, 

culation. The reasons are two-fold. First, t h e  f rac ture  toughness 

values of the  matrix materials used here are those of homogeneous mater- 

ials. I n  a composite, t h e  p l a s t i c  deformation of t he  matrix material i s  

inevi tably constrained by t h e  neighboring hard f ibe r s  or laminas. 

For f i b e r  o r  laminated composites t h e  c r i t i ca l  crack opening 

is  luwer than t h e  value used i n  t h e  above cal- %, 

This 

effect cer ta in ly  lowers the  toughness value. Secondly, i n  a p rac t i ca l  

composite system, the  presence of a large volume f rac t ion  of hard phase 

materials tend t o  lower t h e  d u c t i l i t y  of t h e  whole system. 

sequence, t he  composite tends t o  be br i t t le  and 

A s  a con- 

6(c)  value i s  lowered. 

4. Discussion 

In  t h e  present analysis, it i s  assumed t h a t  the p l a s t i c  

The va l id i ty  of t h i s  assumption i s  confined t o  a t h i n  layer.  

zone i s  

now e x a m -  

ined. It i s  noted t h a t  i n  a homogeneous medium, t h e  resul tant  shear 

stress a t  t h e  t i p  of a mode I11 crack var ies  only w i t h  the  radial d is -  

tance from the  t i p .  

medium has been car r ied  out by using both dis locat ion and c l a s s i ca l  plas- 

t i c i t y  theory [7,14]. I n  t h e  dis locat ion theory, t h e  p l a s t i c  zone i s  

assumed t o  be confined i n  a th in  layer.  

Hault and McClintock f o r  a perfect-plast ic  so l id  i s  a c i r cu la r  region a t  

t h e  crack t i p .  

theories  are i n  good agreement, it has been concluded t h a t  the length of 

p l a s t i c  zone i s  insens i t ive  t o  t h e  shape in .  homogeneous medium (Chapter I). 

Analysis of an e l a s t i c -p l a s t i c  crack i n  a homogeneous 

The p l a s t i c  zone considered by 

Since the  length of p l a s t i c  zones deduced from both 
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There has been no solution obtained from c la s s i ca l  p l a s t i c i t y  theory 

f o r  the problem considered i n  t h i s  chapter, Hence, there i s  no exact so- 

l u t ion  of t h e  shape of p l a s t i c  zone ahead of t h e  crack i n  a two-phase 

medium. However, as far as t h e  p l a s t i c  zone length i s  concerned, it i s  

not un rea l i s t i c  t o  assume t h a t  t he  p l a s t i c  zone i s  confined t o  a narrow 

region, coplanar w i t h  t h e  crack. Th i s  i s  due t o  the  fact that  j u s t  as i n  

t h e  case of a homogeneous medium, t h e  stress f i e l d  induced i n  the  neighbor- 

ing phase due t o  a crack against  an in te r face  a l s o  varies only w i t h  the  

radial distance f romthe  crack t i p .  

One fur ther  j u s t i f i ca t ion  of the  assumed p l a s t i c  zone shape has 

been given by Co t t r e l l  [ 3 ] .  

t h e  shape of zone i s  essent ia l ly  because t h e  interact ions of d i s tan t  dis-  

locations a re  not grea t ly  a l t e r ed  i n  magnitude by changing t h e i r  r e l a t ive  

coordinates from x t o  (x -I- y), provided x Z y. Further, t he  p l a s t i c  

displacement F(c) a t  the  t i p  i s  always of the order: 

The in sens i t i v i ty  of p l a s t i c  zone length t o  

0 6 ( ~ )  = 2b% = 2b 
2 

where \ i s  the  s t r a i n  i n  the  p l a s t i c  zone of length b. 
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CFfAPTER V I  

SUGGESTIONS FOR F'UTURE WORK 

The dislocation model of an e las t ic -p las t ic  crack i s  very important 

i n  studying f rac ture  of two-phase solids.  Besides t h e  problems discussed 

i n  t h e  last f i v e  chapters of t h i s  disser ta t ion,  what needs fur ther  re- 

search is  outlined as follows: 

1. It i s  necessary t o  consider the cases where t he  second phases 

a re  of f i n i t e  dimension. W e  have taken i n t o  account t h e  crack- 

ing of a th in  hard surface f i lmwi th  p l a s t i c  deformation i n  

the  neighboring phase. T h i s  problem i s  equivalent t o  t h e  s i t -  

uation of cracking a lamina of f i n i t e  wid th  and having p l a s t i c  

zones extended i n t o  the  tough matrix. The width of the  lamina 

w i l l  ce r ta in ly  a f fec t  t h e  extension of p l a s t i c  zones and t h e  

crack t i p  opening displacement. 

It i s  believed t h a t  fur ther  investigation is  necessary t o  

consider the e f fec t  on the  fracture  behavior of a lamina due 

t o  neighboring laminas. 

l e a s t  three laminas whi le  t h e  cent ra l  one i s  cracked. By 

changing the  width of t he  laminas and the  spacings i n  between, 

it is  hopeful t h a t  w e  can optimize t h e  volume fract ion of t he  

second phase material t o  ge t  the most e f f i c i en t  service of 

the  composite. 

Problems of Modes I and I1 cracks are a l so  of great practica!L 

importance. 

volving an e l a s t i c  crack crossing a phase boundary. 

2. 

I n  t h i s  model w e  have t o  consider a t  

3. 

We have formulated mthematically the  problem in-  

Further 
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investigation is  needed t o  consider Mode I e l a s t i c  crack i n  a 

lamina. As  e las t ic -p las t ic  cracks are concerned, it i s  neces- 

sary t o  take i n t o  consideration the  spread of p l a s t i c i t y  out 

of t h e  crack plane. 
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Appendix A 

INVERSION OF THE SINGULAR INTFARAL EQUA.TJON 

Equation (Ie4-1)  can usua l ly  be reduced t o  t h e  genera l  form 

a t  = $(to) . 

L i s  any set of non-intersect ing a r c s  i n  t h e  complex plane. On L , G ( t )  

i s  unknown and $(t) i s  a given complex funct ion,  

Singular  i n t e g r a l  equations wi th  Cauchy type  ke rne l  have been 

s tudied  i n  d e t a i l  by Muskhelishvili  r121. The deduction of invers ion  

formulas of t h e  Cauchy i n t e g r a l  taken over a union of a r c s  can be found 

i n  Chapter I1 of h i s  book. The corresponding Hi lber t  problem i s  solved 

i n  $84 of t h a t  book, The underlying concepts of t h e  a n a l y s i s  have been 

assembled i n  a concise  form by Swinden [l3]. It i s  introduced here,  

Consider any complex func t ion  F(x) s e c t i o n a l l y  holomorphic i n  

t h e  complex plane outs ide  L. L e t  F+( t )  and F - ( t )  be the l imi t ing  

values  of F ( Z )  as z t from p o s i t i v e  and negat ive sides of L 

respectively.. 

F i r s t  consider  t h e  problem of f ind ing  F (z )  s a t i s fy ing ,  on L, 

t h e  r e l a t i o n  

Y 



where G ( t o )  is rtsswd t o  be Imam, By using Cauchy theorem, it can 

be shown that the  most general function sat isfying (A-2) i s  

F(z) = &-e d t  + R(z)  

where 

i m~ + 5 aiz 
i=1 j#40 i=o 

(A-4)  

i s  a function continuous over 

orders yJ m2, ... me and m a t  the  points zl, z2, ... ze and 00 

not on L. 

L and having a f i n i t e  number of poles of 

Nm suppose that G ( t o )  i s  uriknawn and i s  a solution of (A-1). 

Also, F(z) i s  sect ional ly  holornorphic outside L and zero a t  inf in i ty .  

Then t h e  problem can be reformulated as the problem of finding a holo- 

morphic function sat isfying 

To do t h i s  the follawing def in i t ion  i s  made: 

n 
Xp I (z-%)-' (z-bk)Y'l Pp(z) 

(A-5) 

where &k and bk are t h e  end points of the  kth a rc  comprising L and 

P (z)  i s  a polynominal of degree p with zeros on L. A l s o  it can be 
I 

P 



shown t h a t  7 = ' from l imit ing process, Relation (A-5) then becomes v 

I f+(tO) - f-(to) = (A-7) 

i n  which g( to)  i s  a known function. The general solution of (A-7) i s  

given by (A-3). 

What remains t o  be done i s  t o  construct X ( z )  with the  property 
P 

t h a t  i n  t he  f i n i t e  plane, a l l  zeros of X (z)  belong t o  L. Further, 

F( z ) i s  required holomorphic everywhere outside L. Consequently, f (2) 

must be holomorphic except perhaps a t  in f in i ty .  This implies t h a t  i n  the  

solution of (A-7) the function 

nomial Qm(z) of degree m. From (A-7) it follows t h a t  

P 

R(z) i s  no more than an a rb i t r a ry  poly- 

Suppose L i s  t h e  union of n segments and F(z) is bounded at 

and unbounded at the remaining 
P 

a given set of end points el, c2, e . .  c 

points, then 

(A-9) 

Also define 



(A-10) 
j =p+l 

It follows from (A-6) 

A l s o ,  we have: 

(A-11 ) 

(A-12) 

Consequently, from (A-2), (A-8), (A-11) and (A-12) w e  obtain: 

T h i s  i s  the  general solution of (A-1) and R1, Re 

and Qm i s  an a rb i t r a ry  polynomial of degree m. 

are defined by (A-10) 

Finally, t h e  requirement of f in i teness  of F(z) a t  i n f i n i t y  leads 

t o  the following conditions. Define 

(A-14) 



then if p > - n, s ( z )  = 0, 4, = 0 for k = 1,2 ,.., p-n and for 

p < n, rn < n-p. 



THE WIENER-HOPF METHOD 

There i s  an extensive a r ray  of important problems of which solution 

by Fourier or Mellin transform methods requires t h e  use of an ingenious 

technique which w a s  invented by Carlman and la te r  developed by Wiener and 

Hopf. 

Typically, i n  problems of d i f f e r e n t i a l  equations with mixed boundary 

conditions on the  l i n e  or w i t h  boundary conditions on 

a half l ine,  one i s  led  v i a  t h e  Fourier and Mellin transform technique t o  

t h e  f o l l m i n g  functional re la t ion:  

PO, - 03 < x < 03, 

A ( a )  @+(a) + B ( a ) Y  - (a) + .(a) = 0 

-CO < a <  00 of the  + '  where the  equation holds i n  a s t r i p  T < T < T 

complex plane a = Q + i't. @+(a) and Y (a )  are regular i n  t h e  half  

planes T > T and T < T respectively. The functions A(a), B(a) 

and c (a )  are given functions of a regular and non-zero i n  t h e  s t r i p .  

T and T are determined by the  information regarding the  behavior of 

these functions as a 

- 
- 

- + 

+ - 
tends t o  i n f i n i t y  i n  appropriate half planes. 

The fundamental s tep  i n  the  Winer-Hopf procedure f o r  solution of 

t h i s  equation i s  t o  f ind  K (a)  regular and non-zero i n  T > T , K-(a) 

regular and non-zero i n  T < T+, such t h a t  

+ - 



U s e  equation (B-2) t o  rearrange (B-1) as: 

K+(G) @+(a) + K - (a) ,  Y - ( a )  + K - (a)  c(a)/B(a) = 0 

Decompose K-(a) c(a)/B(a) i n  t h e  form 

03-31 

where c+(a) i s  regular  i n  ? > T- , c - (a )  i s  regular i n  T < T+. The 

decomposition involved i n  Eq. (B-4) i s  a procedure based upon t h e  Cauchy's 

theorem. 

the decomposition of ,h (A(a ) /B(a ) )  as a sum. If decomposition involves 

an e n t i r e  function, then it may be convenient t o  use an infinite-product 

expression f o r  that e n t i r e  function, so as t o  obtain a t  once i t s  two ap- 

propriate  factors .  

The decomposition i n  Eq. (B-2) as a quotient i s  equivalent t o  

Combine Eqs. (B-3) and (B-4) so as t o  define a function J (a )  by 

By ana ly t ica l  continuation, it i s  obvious t h a t  J(a)  i s  an e n t i r e  

function on the  a-plane. Now suppose t h a t  it can be shown that :  



Then by Liouvi l l ' s  theorem J ( a )  i s  a polynomial P(a) of degree less 

than or  equal t o  t h e  in t eg ra l  pa r t  of min(p.q), namely: 

and Y - (a)  t o  within the  a rb i t r a ry  poly- @+ These equations determine 

nomial P(a), 

which must be determined otherwise. Equation (B-7) then determines @+(a) 

and Y (a) .  

i.e., t o  within a f i n i t e  number of a rb i t r a ry  constants 

- 
It i s  noted t h a t  any par t ia l -different ia l -equat ion boundary value 

problem which leads t o  a functional equation of t he  Weiner-Hopf type (B-1) 

can always be recast as an in t eg ra l  equation of the type 

K ( x - t )  f ( t )  d t  = f ( x )  ( O ~ x < m )  03-8) a 
This  can be achieved simply by taking the inverse transform of Eq. (B-1) 

and use the convolution theorem. Consequently, i n t eg ra l  equations w i t h  

kernel function of t he  type K ( x - t )  

Mellin transform t o  recast it i n  t h e  form of Eq. (B-1) and then proceed 

t o  solve i n  t h e  same way as outlined above. 

can be solved by taking a Fourier or 
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APPENDIX c 

NUMEBICAL SOLUTION OF LINEAR INTEGRAL EQUATIONS 

Consider t he  type of i n t eg ra l  equation 

The replacement of t he  given kernel by a degenerate one makes it possible 

t o  f ind  the  solution i n  the  form of an expression which i s  valid f o r  t he  

whole i n t e r v a l  a < x < b and f o r  a rb i t r a ry  values of t h e  parameter A. 

A serious drawback of t h i s  method i s  t h e  necessity of calculating the  

quadratures, which are sometimes rather complicated and qui te  numerous. 

This  objection, moreover, appl ies  also t o  the  method of successive approx- 

imations. 

proximate solution of i n t eg ra l  equations which does not involve t h e  cal-  

culation of quadratures [ 37,38,39 l 

- -  

It i s  the  present purpose t o  introduce a method f o r  the  ap- 

This technique i s  based upon the  modified method of Goursat and 

Nystrom. 

t i o n  under the  in t eg ra l  sign by a polynomial over an interval,  and then 

evaluate the  in t eg ra l  a t  cer ta in  specified points within in te rva l  of 

integration. 

The method consists essent ia l ly  of replacing the  unknown func- 

The first s tep i n  solving Eq. (C-1) i s  t o  approximate the  def in i te  

i n t eg ra l  on the  right-hand s ide by a quadrature formula. 

formula has the  general expression 

The resul t ing 



+ .... + cnK(x,tn) @ ( t n ) l  

where tl, t2, ... t are subdivision points of t he  i n t e r v a l  (a,b) and 

the  c ’ s  a re  weighting coefficients.  Both the number of subdivisions and 

n 

the  values of weighting coeff ic ients  depend on the  type of quadrature 

formula used. 

f o r  i = 1’2, ... n and denote @(ti) = ai and ti Let x = 

F(t i )  = Fi. Hence from (C-2)  w e  get n equations of the  type 

@. = F. + (b-a) [clK(t ts) QL + c2K(t t2) B2 + ... 
1 1 i’ i’ 

f o r  i = 1,2,... n. 

T h i s  gives a system of n l i nea r  equations i n  the  n unknmns a1,O2, 

. . ,@ which can be solved. Subst i tute  these values i n t o  (C-2)  then 

yields an approximate expression f o r  @(x) i n  the  whole interval .  

n’ 

When n+m, the  approximate expression for  @(x) obtained by 

t h i s  method tends t o  the  solution of the  in tegra l  equation (C-1) as a 

l i m i t ,  provided only t h a t  t h i s  solution ex is t s  and i s  unique. 

t h i s  may be found, for example, i n  t he  book by L. V. Kantorovich and 

V, I. Krylov 1381. 

Proof of 
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